We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of D-amino acids, lack of the Ca 2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), N-acylation of the ornithine side chain. These major components of the peptide antibiotic family have pronounced activity against Grampositive bacteria. The mechanism of action of gausemycins was explored by a number of methods, showing significant differences compared to glycopeptides and related lipopeptides. Gausemycins exhibit only slight Ca 2+ -dependence of antimicrobial activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.
In this work, we report the isolation and detailed functional characterization for the new non-ribosomally synthesized antibiotic 5812-A/C, which was derived from metabolites of Streptomyces roseoflavus INA-Ac-5812. According to its chemical structure, the studied 5812-A/C preliminary is composed of a cyclic peptide part covalently bounded with an arabinose residue. N-terminal amino acid sequencing of the native peptide has identified its partial structure of Leu-Asp-Gly-Ser-Gly and consisting of a Tyr residue that is supposed to have a two-component peptide nature for the molecule studied. However, the structural analysis of the antibiotic complex derived from S. roseoflavus INA-Ac-5812 is still ongoing. The mechanism of action of 5812-A/C was assessed in comparison with its most related analog, the lipopeptide antibiotic daptomycin, given the presence in both antimicrobials of an L-kynurenine amino acid residue. The inhibitory activity of 5812-A/C against Gram-positive bacteria including methicillin-resistant strain of Staphylococcus aureus was similar to daptomycin. The mechanism of action of 5812-A/C was associated with the disruption of membrane integrity, which differs in comparison with daptomycin and is most similar to the antimicrobial membranedisturbing peptides. However, 5812-A/C demonstrated a calcium-dependent mode of action. In addition, unlike daptomycin, 5812-A/C was able to penetrate mature biofilms and inhibit the metabolic activity of embedded S. aureus cells. At the same time, 5812-A/C has no hemolytic activity toward erythrocyte, but possessed weak cytotoxic activity represented by heterochromatin condensation in human buccal epithelium cells. The biological properties of the peptide 5812-A/C suggest its classification as a calcium-dependent antibiotic effective against a wide spectrum of Gram-positive pathogenic bacteria.
We report a novel family of natural lipoglycopeptides produced by <i>Streptomyces</i> sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The com-pounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual posi-tions of D-amino acids, lack of the Ca<sup>2+</sup>-binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), N-acylation of the or-nithine side chain. These major components of the peptide antibiotic family have pronounced activity against Gram-positive bacteria. The mechanism of action of gausemycins was explored by a number of methods, showing significant differences compared to glycopeptides and related lipopeptides. Gausemycins exhibit only slight Ca<sup>2+</sup>-dependence of an-timicrobial activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.