The Disko Bugt region in central West Greenland is characterised by permanent ice streams, of which Jakobshavn Isbræ is by far the most important. The first thorough studies on the glaciology of the region were conducted over 150 years ago by H.J. Rink, who introduced the terms 'ice streams' and 'Inland Ice'. Rink's work inspired new field work, which has continued to the present, and the long series of observations are unique for an Arctic region. Cooling during the Cenozoic led to ice-sheet growth in Greenland. A number of interglacial occurrences have been reported from the Disko Bugt region, and during the penultimate glacial stage, the Greenland ice-sheet margin extended to the shelf break. During the last glacial maximum, the ice margin probably extended only to the inner part of the banks on the continental shelf, and large floating glaciers may have been present at this time. During the Younger Dryas cold period, the ice margin may have been located at a marked basalt escarpment west of Disko Bugt. Disko Bugt was deglaciated rapidly in the early Holocene, around 10 500–10 000 years before present (10.5–10 ka B.P.), but when the ice margin reached the eastern shore of the bay, recession paused, and major moraine systems were formed. With renewed recession, the present ice-margin position was attained around 8–6 ka B.P., and by c. 5 ka B.P. the ice margin was located east of its present position. The subsequent Neoglacial readvance generally reached a maximum during the Little Ice Age, around AD 1850. This was followed by recession that has continued to the present day. The relative sea-level history shows a rapid sea-level fall in the early Holocene, and a slow rise in the late Holocene. This development mainly reflects a direct isostatic response to the ice-margin history. Jakobshavn Isbræ is the main outlet from the Greenland ice sheet. It drains c. 6.5% of the present Inland Ice, and produces c. 35–50 km3 of icebergs per year, corresponding to more than 10% of the total output of icebergs from the Inland Ice. The velocity of the central part of the ice stream at the front has been around 7 km/year since records began, but has nearly doubled in recent years. Other calf-ice producing glacier outlets in Disko Bugt produce c. 18 km3 per year. The large calf-ice production of Jakobshavn Isbræ may have been initiated at about 8 ka B.P. when the glacier front receded from the iceberg bank (Isfjeldsbanken) near Ilulissat. Ice streams in inner and outer Egedesminde Dyb may have been active during the early Holocene and during the last glacial maximum.
The Nuup Kangerlua region in southern West Greenland became deglaciated in the early Holocene and by the mid-Holocene, the margin of the Inland Ice was located east of its present position. Discussion of late Holocene changes in the frontal positions of outlets relies on descriptions, paintings, photographs, maps, data from investigations of Norse ruins, aerial photographs and satellite images. The Kangiata Nunaata Sermia glacier system has receded over 20 km during the last two centuries, indicating a marked response to climatic fluctuations during and since the Little Ice Age (LIA). A large advance between 1700 and 1800 was followed by rapid recession in the first half of the 1800s. Limited data from c. 1850–1920 indicate that although the long-term position of the glacier front remained c. 10–12 km behind the LIA maximum, the late 1800s and the early 1900s may have seen a recession followed by an advance that resulted in a pronounced moraine system. The ice-dammed lake Isvand formed during the LIA maximum when meltwater from the western side of Kangiata Nunaata Sermia drained to the Ameralla fjord in the west. This is in contrast to the drainage pattern before the 1700s, when water probably drained to Kangersuneq in the north. Thinning of Kangiata Nunaata Sermia resulted in total drainage of Isvand between 2000 and 2010 and the discharge of water through Austmannadalen has now returned to the same level as that in medieval times. Other outlets in the region, such as Akullersuup Sermia and Qamanaarsuup Sermia have varied in phase with Kangiata Nunaata Sermia, but with amplitudes of only a few kilometres. In contrast, Narsap Sermia has been nearly stationary and Kangilinnguata Sermia may have advanced until the middle of the 1900s. Lowland marine outlets in south-western Greenland were characterised by large amplitude changes during the Neoglacial. Extreme examples, in addition to Kangiata Nunaata Sermia, are Eqalorutsit Killiit Sermiat at the head of Nordre Sermilik fjord in southern Greenland and Jakobshavn Isbræ in Disko Bugt, central West Greenland. The Neoglacial advances appear to have occurred at different times, although this may in part reflect the limited information about fluctuations prior to the 1930s. The differences could also reflect variations in mass balance of different sectors of the ice sheet, different subglacial dynamics or topographical factors. The lowland areas are separated by uplands and highlands that extend below the marginal part of the Inland Ice; in such areas, the outlets have been advancing almost up to the present, so that the position of the glacier front around AD 2000 broadly coincides with the LIA maximum. Charting the fluctuations of the outlets thus illustrates the large variability of the glaciers' response to changing climate but it is notable that the number of advancing outlets has decreased markedly in recent years.
Plio-Pleistocene transition. The dating is primarily based on biostratigraphical correlation of lower marine fauna and a few fragments of terrestrial mammals. Although deposited in marine and coastal environments, the sediments contain abundant remains of terrestrial and limnic organisms. This paper examines macroscopic plant and insect remains. About 60 taxa of vascular plants and 120 insect taxa have so far been identified. Nearly all of the named insect species are extant, extralimital forms, generally of a recent subarctic/boreal and more or less circumpolar distribution. The species composition shows that upland areas were covered with forest-tundra and heathland and that mesotrophic, well-vegetated lakes and a number of other wetland localities existed in the area. The presence of arctic plants in the formation puts some time constraints on their origin.
The brackish Baltic Sea and the more saline Kattegat are connected by three straits, Lillebælt, Storebælt and Øresund (Fig. 1). Of the three straits, Lillebælt is the narrowest, with 700 m at its narrowest point, widening out towards the south to around 25 km (Fig. 2). In the narrow parts of Lillebælt, water depths around 30–50 m are common. In the northern part of Lillebælt the depth is 16–18 m and in the southern part the depth is around 35 m. Storebælt and Øresund have played important roles as outlets during the history of the Baltic Sea, and their histories have been much discussed (Björck 1995; Bennike et al. 2004). In contrast, Lillebælt has received little attention. In this paper we present 11 new radiocarbon accelerator mass spectrometry (AMS) ages and propose a curve for Holocene relative shore-level changes in Lillebælt. We use the term shore-level changes rather than sea-level changes because we have constructed both lake-level and sea-level changes.
The Kap København Formation, North Greenland, is a 100-m thick succession of predominantly shallow marine nearshore sediments, dated to c. 2.4 ma. The abundant well preserved remains of mosses, land plants, foraminifers, ostracodes, insects, cladocers, molluscs, and a few vertebrates enable a detailed reconstruction of terrestrial and marine environments and climate. The sediments indicate a complex sea-level history implying combined glacioisostatic and -eustatic control. This is supported by the faunal and floral development from arctic to subarctic and boreal conditions, and the record probably reflects the demise of the first major Cenozoic ice sheet, the Praetiglian, over the area, and the onset of the succeeding Tiglian A interglacial. The record ends with the attainment of the interglacial sea-level highstand and climate optimum when forest tundra reached the world’s northernmost coasts. It is inferred that the duration of sedimentation was a half obliquity cycle, i.e. 20,000 yr, at the most.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.