In this study the occlusion effect was quantified for five types of earmolds with different venting. Nine normal-hearing listeners and ten experienced hearing aid users were provided with conventional earmolds with 1.6 and 2.4 mm circular venting, shell type earmolds with a novel vent design with equivalent cross-sectional vent areas, and nonoccluding soft silicone eartips of a commercial hearing instrument. For all venting systems, the occlusion effect was measured using a probe microphone system and subjectively rated in test and retest sessions. The results for both normal-hearing subjects and hearing aid users showed that the novel vents caused significantly less occlusion than the traditional vents. Occlusion effect associated with the soft silicone eartip was comparable to the nonoccluded ear. Test-retest reproducibility was higher for the subjective occlusion rating than for the objectively measured occlusion. Perceived occlusion revealed a closer relationship to measured occlusion in the ear in which the measured occlusion effect was higher ("high OE" ear) than in the "low OE" ear. As our results suggest that subjective judgment of occlusion is directly related to the acoustic mass of the air column in the vent, the amount of perceived occlusion may be predicted by the vent dimensions.
Real-ear measurements using the modified pressure method with concurrent (real-time) equalization can be inaccurate, when amplified sound leaks out of the ear canal and reaches the reference microphone. In such situations the reference microphone will detect an increased sound level and reduce the output of the loudspeaker to maintain the desired level. The risk of having errors due to leaks increases if digital feedback suppression (DFS) is used, thus achieving higher feedback-free gain levels. The following hypotheses were tested: a) using the concurrent equalization method for fitting hearing instruments with DFS may result in underestimated real-ear insertion gain (especially when using open fittings) and b) as the benefit of the DFS system increases, this error also increases. Real-ear measurements were carried out in twenty-one subjects using the modified pressure method with stored equalization as well as with concurrent equalization. The results of the study supports both hypotheses. As a consequence it is recommended to use a stored equalization method for real-ear measurements of hearing instruments with DFS and open fitting.
The benefit of bilateral hearing aids is well documented, but many hearing-aid users still wear only one aid. It is plausible that the occlusion effect is part of the reason for some hearing-aid users not wearing both hearing aids. In this study we quantified the subjective occlusion effect by asking ten experienced users of bilateral hearing aids and a reference group of ten normal-hearing individuals to rate the naturalness of their own voice while reading a text sample aloud. The subjective occlusion effect was evaluated in the unilateral versus bilateral condition for a variety of vent designs in earmolds and in a custom hearing aid. The subjective occlusion effect was significantly higher for bilateral hearing aids with all vent designs with the exception of a non-occluding eartip option. The subjective occlusion effect was reduced with the more open vent designs in both the unilateral and bilateral conditions. Assuming that the occlusion effect is a barrier to bilateral hearing aid use, these results indicate that open-hearing-aid fittings can help promote the use of two aids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.