Background: The use of insecticide-treated nets (ITN) is an important tool in the Roll Back Malaria (RBM) strategy. For ITNs to be effective they need to be used correctly. Previous studies have shown that many factors, such as wealth, access to health care, education, ethnicity and gender, determine the ownership and use of ITNs. Some studies showed that free distribution and public awareness campaigns increased the rate of use. However, there have been no evaluations of the short-and long-term impact of such motivation campaigns. A study carried out in a malaria endemic area in south-western Burkina Faso indicated that this increased use declined after several months. The reasons were a combination of the community representation of malaria, the perception of the effectiveness and usefulness of ITNs and also the manner in which households are organized by day and by night.
Abstract. Spraying of canvas tents with residual pyrethroid insecticide is an established method of malaria vector control in tented refugee camps. In recent years, plastic sheeting (polythene tarpaulins) has replaced canvas as the utilitarian shelter material for displaced populations in complex emergencies. Advances in technology enable polythene sheeting to be impregnated with pyrethroid during manufacture. The efficacy of such material against mosquitoes when erected as shelters under typical refugee camp conditions is unknown. Tests were undertaken with free-flying mosquitoes on entomological study platforms in an Afghan refugee camp to compare the insecticidal efficacy of plastic tarpaulin sprayed with deltamethrin on its inner surface (target dose 30 mg/m 2 ), tarpaulin impregnated with deltamethrin (initially ! 30 mg/m 2 ) during manufacture, and a tent made from the factory impregnated tarpaulin material. Preliminary tests done in the laboratory with Anopheles stephensi Liston (Diptera: Culicidae) showed that 1-min exposure to factory-impregnated tarpaulins would give 100% mortality even after outdoor weathering in a temperate climate for 12 weeks. Outdoor platform tests with the erected materials (baited with human subjects) produced mosquito mortality rates between 86±100% for sprayed or factory-impregnated tarpaulins and tents (average $40 anophelines and $200 culicines/per platform/ night), whereas control mortality (with untreated tarpaulin) was no more than 5%. Fewer than 20% of mosquitoes blood-fed on human subjects under either insecticide-treated or non-treated shelters. The tarpaulin shelter was a poor barrier to host-seeking mosquitoes and treatment with insecticide did not reduce the proportion blood-feeding. Even so, the deployment of insecticide-impregnated tarpaulins in refugee camps, if used by the majority of refugees, has the potential to control malaria by killing high proportions of mosquitoes and so reducing the average life expectancy of vectors (greatly reducing vectorial capacity), rather than by directly protecting refugees from mosquito bites. Mass coverage with deltamethrin-sprayed or impregnated tarpaulins or tents has strong potential for preventing malaria in displaced populations affected by conflict.
Background Insecticide-treated nets (ITNs) undergo a series of tests to obtain listing by World Health Organization (WHO) Prequalification. These tests characterize the bioefficacy, physical and chemical properties of the ITN. ITN procurers assume that product specifications relate to product performance. Here, ITN test methods and their underlying assumptions are discussed from the perspective of the ITN manufacturing process and product characteristics. Methods Data were extracted from WHO Pesticide Evaluation Scheme (WHOPES) meeting reports from 2003 to 2017, supplemented with additional chemical analysis to critically evaluate ITNs bioassays with a focus on sampling, washing and wash resistance, and bioefficacy testing. Production methods for ITNs and their impact on testing outcomes are described. Results and recommendations ITNs are not homogenous products. They vary within panels and between the sides and the roof. Running tests of wash resistance using a before/after tests on the same sample or band within a net reduces test variability. As mosquitoes frequently interact with ITN roofs, additional sampling of the roof when evaluating ITNs is advisable because in nets where roof and sides are of the same material, the contribution of roof sample (20–25%) to the average is less than the tolerance for the specification (25%). Mosquito mortality data cannot be reliably used to evaluate net surface concentration to determine regeneration time (RT) and resistance to washing as nets may regenerate beyond the insecticide concentrations needed to kill 100% of susceptible mosquitoes. Chemical assays to quantify surface concentration are needed. The Wash Resistance Index (WRI) averaged over the first four washes is only informative if the product has a log linear loss rate of insecticide. Using a WRI that excludes the first wash off gives more reliable results. Storage conditions used for product specifications are lower than those encountered under product shipping and storage that may exceed 50 °C, and should be reconsidered. Operational monitoring of new ITNs and linking observed product performance, such as bioefficacy after 2 or 3 years of use, with product characteristics, such as WRI, will aid the development of more robust test methods and product specifications for new products coming to market.
This paper addresses the problems of mosquito control in urban areas of Burkina Faso. The main objectives are to examine relevant socio-cultural aspects in relation to a mosquito control intervention using a biolarvicide with main emphasis on local perceptions of mosquito nuisance and existing practices of mosquito control, including the cost of protective measures at household level. This is the report of an inter-disciplinary research project carried out in the two major towns of Burkina Faso, Bobo-Dioulasso and Ouagadougou, in 1999 and 2000, respectively. Both quantitative and qualitative methods were used in the ethnographic part of the study. Two questionnaire surveys were conducted in both study areas: one prior to the intervention (n=1083) and the other after the intervention of the treatments with bio-larvicide (n=956). In addition, 70 in-depth interviews and 17 focus group discussions (FGDs) were conducted. The findings show that mosquitoes are considered an important problem in the urban areas, both as a nuisance and a health risk and that the local population is very active in applying mosquito control measures at the household level. The intervention project was received positively by the local population with a decline in the perceived level of annoyance. The causal relationship between mosquitoes and malaria is clear, but the explanatory framework of the relationship between mosquitoes and other diseases is still under debate. The most common prevention methods are mosquito coils and aerosol spray, even though bed nets are perceived to be the most efficient and effective method. The investments in coils and aerosol sprays alone would mean an increase of 40% in the national figures for health expenditure at household level.
BackgroundBursting strength is a standard method for evaluating mosquito net strength. This article suggests that tension strength with one grab and one hook better represent how holes are generated in bed nets in real life.MethodsMeasurements of bursting strength and tension strengths in the two directions are analysed for eight model nets created for the study. The nets were made in the most commonly used denier (75 and 100 D) and mesh (156 holes/inch2) for multifilament polyester yarns, texturized or not, and with 4 or 6 sided holes. All were made from one polyester quality. Data was arranged in a randomized, complete block design and analysed for significant variables and their interactions. Data was then subjected to regression analyses using net square metre weight as a weighting factor with stepwise removal of variables. This revealed how the four textile variables interacted and allowed for making predictions for the strength of commercial nets in polyester or polyethylene.ResultsFor the model nets, higher denier provided higher bursting strength and tension strengths, texturizing weakened nets and four-sided holes were stronger than six-sided holes. Even when compensating for square metre weight, 100 D nets are stronger than 75 D nets. Results for the commercial polyester net nets are less clear, probably because of different qualities of polyester. Tensile strength: a 75 denier net knitted tightly to provide the same square metre weight as a standard 100 denier net therefore does not obtain the same strength. Polyethylene nets are made of mono-fibre yarns and, therefore, have higher tension strength in both directions than multifilament polyester nets. For bursting strength results overlap for 100 denier yarns of both yarn types. As a class, commercial polyethylene nets are stronger than commercial polyester net whatever method is used for evaluation.ConclusionTension strength measured in the length and width directions of the net using one hook and one clamp provide new relevant data as this method more closely imitates the cause of tear holes in nets as they occur in real life use. Using this methodology, the commercial monofilament yarn polyethylene nets are significantly stronger than the commercial multifilament polyester nets. This test method should be applied for nets used for years in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.