A set of 334 commercial virgin olive oil (VOO) samples were evaluated by six sensory panels during the H2020 OLEUM project. Sensory data were elaborated with two main objectives: (i) to classify and characterize samples in order to use them for possible correlations with physical–chemical data and (ii) to monitor and improve the performance of panels. After revision of the IOC guidelines in 2018, this work represents the first published attempt to verify some of the recommended quality control tools to increase harmonization among panels. Specifically, a new “decision tree” scheme was developed, and some IOC quality control procedures were applied. The adoption of these tools allowed for reliable classification of 289 of 334 VOOs; for the remaining 45, misalignments between panels of first (on the category, 21 cases) or second type (on the main perceived defect, 24 cases) occurred. In these cases, a “formative reassessment” was necessary. At the end, 329 of 334 VOOs (98.5%) were classified, thus confirming the effectiveness of this approach to achieve a better proficiency. The panels showed good performance, but the need to adopt new reference materials that are stable and reproducible to improve the panel’s skills and agreement also emerged.
Τoward a harmonized and standardized procedure for the determination of total hydroxytyrosol and tyrosol content in virgin olive oil (VOO), the pros of a recently published in house validated ultra high performance liquid chromatography (UHPLC) protocol are discussed comparatively with those of other procedures that determine directly or indirectly the compounds hosted under the health claim on “olive oil polyphenols” (EC regulation 432/2012). Authentic VOOs were analyzed with five different liquid chromatographic separation protocols and 1H-NMR one in five different laboratories with expertise in VOO phenol analysis within three months. Data comparison indicated differences in absolute values. Method comparison using appropriate tools (Passing-Bablok regression and Bland Altman analyses) for all protocols vs. the UHPLC one indicated slight or statistically significant differences. The results were also discussed in terms of cost effectiveness, detection means, standard requirements and ways to calculate the total hydroxytyrosol and tyrosol content. Findings point out that the in-house validated fit for the purpose UHPLC protocol presents certain pros that should be exploited by the interested parties. These are the simplicity of sample preparation, fast elution time that increase the number of samples analyzed per day and integration of well-resolved peaks with the aid of only two commercially available external standards. Importance of correction factors in the calculations is stressed.
Mislabeling of olive oil with respect to its geographical origin is a frequently encountered fraud. Although according to European Regulation (EU) No 29/2012 it is mandatory to declare the geographical origin of an olive oil on the label, no generally accepted analytical method exists to verify this labeling. As Italy, Greece, and Spain are the main producing countries in the Mediterranean Area, the aim is to develop an analytical method that allows classification of these three origins and which can be reliably applied to routine samples. A protocol for the extraction and subsequent 1H‐NMR measurement of the polar fraction of olive oil is developed and applied to a large number of authentic reference samples. A classification model is developed which obtains 96% of correct classification during cross‐validation. The method is being routinely applied for testing commercial off‐the‐shelf olive oils, and its accuracy is continuously verified.
Practical Applications: In addition to checking the geographical origin of an olive oil, the developed protocol allows to analyze the polar constituents of an olive oil in great detail with little effort, which should prove useful also for other applications, for example, quantitation of phenols or detection of admixtures with other vegetable oils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.