We introduce the notion of a bent function on a finite Abelian group which in the case of the elementary Abelian 2-group coincides with the well-known notion of a Boolean bent function. Using methods of the theory of characters and commutative harmonic analysis we obtain a number of properties of bent functions which generalize the corresponding properties of Boolean bent functions. We construct some classes of bent functions.
Comments to Chapter 1 35 Chapter 2. Boolean Functions 37 2.1. Basic concepts and definitions 37 2.2. Numerical and metric characteristics 44 2.3. Autocorrelation and crosscorrelation 56 2.4. Group algebra of Boolean functions 61 2.5. Cryptographic properties of Boolean functions and mappings 65 2.6. Covering sequences of Boolean functions 74 Comments to Chapter 2 76 Chapter 3. Classifications of Boolean Functions 77 3.1. Group equivalence of mappings. Polya's theorem 77 3.2. Classification of Boolean functions of five variables 83
Вводится понятие бент-функции на конечной абелевой группе, которое в случае элементарной абелевой 2-группы совпадает с хорошо известным по нятием булевой бент-функции. С помощью аппарата теории характеров и коммутативного гармонического анализа получен ряд свойств бент-функций, обобщающих свойства булевых бент-функций. Построены некоторые классы бент-функций. Работа последним из авторов выполнялась при поддержке Российского фонда фундаментальных исследований, проект 96-01-00931.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.