Background Numerous megafauna species from northern latitudes went extinct during the Pleistocene/Holocene transition as a result of climate-induced habitat changes. However, several ungulate species managed to successfully track their habitats during this period to eventually flourish and recolonise the holarctic regions. So far, the genomic impacts of these climate fluctuations on ungulates from high latitudes have been little explored. Here, we assemble a de-novo genome for the European moose (Alces alces) and analyse it together with re-sequenced nuclear genomes and ancient and modern mitogenomes from across the moose range in Eurasia and North America. Results We found that moose demographic history was greatly influenced by glacial cycles, with demographic responses to the Pleistocene/Holocene transition similar to other temperate ungulates. Our results further support that modern moose lineages trace their origin back to populations that inhabited distinct glacial refugia during the Last Glacial Maximum (LGM). Finally, we found that present day moose in Europe and North America show low to moderate inbreeding levels resulting from post-glacial bottlenecks and founder effects, but no evidence for recent inbreeding resulting from human-induced population declines. Conclusions Taken together, our results highlight the dynamic recent evolutionary history of the moose and provide an important resource for further genomic studies.
Our data, collected in the extreme east of Europe, show that a significant biological effect of climate change has been experienced even in territories where temperature increase has been the lowest. This study documents the climatic response of pedunculate oak (Quercus robur) growing near its north-eastern limits in Europe. It demonstrates the potential of oak trees in oldgrowth forest to act as proxy climate indicators. Many factors may influence the temporal stability of the growth-climate, acorn crop-climate and first leafing-climate relationships. Climate data, climatic fluctuations, reproduction, genetics and tree-age may relate to this instability. Our results stress that an increase in climate variability or climatic warming resulting from warmer winters or summers could affect the oak population in eastern Europe in a similar way to that in western Europe. These findings, from remnants of oak forest in the middle Volga region of Russia, allow a further understanding of how species could be affected by future climates.
Recent studies on climate change have reported serious impacts on winter forest birds in Western Europe. However, in areas where climate change has caused milder winters and more stable conditions in summer, one would expect resident bird populations to increase, rather than to decrease in winter. The aim of this study was to investigate the impact of climate change on the population dynamics of ten species of Passeriformes in the Tartarstan Republic, Russia. Ravkin's transect method was used to census fixed randomly selected plots spread over a large geographic area at least once every month for the past 26 years. Observers remained the same over the whole period. The abundance of nine species in the first half of the winter and four species in the second half of the winter showed significant increases during the study period. Unlike studies from countries in Western Europe, there were no significant decreases in these species. Significant changes in winter conditions, as well as during the breeding season, and an overall increase in annual temperatures are likely reasons for a significant increase in the number of birds in winter. Greater winter survival, an increase in the survival rate of fledglings and juveniles during the summer, and later onset of winter, are very important determinants of the winter population. Our findings show that numbers of birds in late winter are related to the severity of winter conditions. Our data do not support conclusions that the populations of forest bird species have decreased due to climate change.
Aim To examine whether change in the timing of a large number of phenological events and their response to temperature differs between trophic levels during the period 1988-2008. LocationIn the vicinity of Kazan, Tatarstan Republic, Russia (55°45′ N, 49°08′ E). MethodsObservations of the dates of first events of 22 plant phases, 8 insect phases, 3 herpetofauna phases and 26 migrant bird phases were examined using regression to assess changes over time and response to temperature. Differences between trophic levels were assessed using ANOVA. ResultsIn comparison to studies from western Europe, relatively few phenological series (15) revealed a significant advance over time, but a much larger number (37), including all the herpetofauna and nearly all the plants, showed a response to temperature. Trends in birds were, on average, twice as great as those for plants, but plants had a significantly greater temperature response. Over the study period local temperatures had not risen significantly but some phenological change was still evident.Main conclusions Phenological change has been less marked in the eastern edge of Europe than in western and central Europe. This is compatible with a lack of significant local warming during the study period. A large number of species show strong responses to temperature so will be expected to advance if/when local temperatures do increase. In contrast to results from elsewhere in Europe, early events were not the most temperature responsive, suggesting local adaptation preventing precocious behaviour and the consequent dangers of sub-zero temperatures.
New concatenated mtDNA sequences (three genes; n = 22) of Siberian taimen Hucho taimen primarily from west Siberian and European regions of the species' range were added to 12 previously published sequences to provide a phylogeographic overview of the species. European samples show only very minor divergence from west Siberian populations, supporting a late Pleistocene expansion from Siberia into the Urals, with no particular relation to the Danube River basin huchen Hucho hucho as once hypothesized. The disjunct distribution of the genus is most likely based on an early Pleistocene vicariant event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.