The authors explore the beads obtained by laser cladding with nickel-based self-fluxing alloy (grain size 20-80 μm) at different laser beam travel rates against the sample and different cladding distances. They examined the iron, nickel, chrome and silicon content of the coating in dependence on the cladding rate and the microstructure in each zone of a bead. As a result, it was established that the beads after laser cladding have a similar structure morphology in all the examined zones, which confirms that there is intense mixing of the molten-metal pool. A distinct correlation has been found between the distribution of coating elements and the modes of laser cladding: the nickel, chrome, and silicon contents of the coating are decreasing while the iron content is increasing with increased cladding rate. The authors point out a strong effect of radiation shielding caused by the vapours generated during the process of melting the powder particles in the area exposed to laser radiation.
The study of laser cladding of powder materials (H13, A11 and M2) onto the tool steel 41Cr4 and C80U was conducted with the aim to establish the influence of overlap ratio, scanning speed and powder feed rate as well as appliance of post-heat treatment on the coating quality and mechanical properties. The highest hardness was achieved for A11 and M2 cladding materials, lowest coefficient of friction – for H13 and M2 coatings. It could be recommended to apply the laser cladding at larger percentage of overlap (50%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.