Nonlinear optics is of crucial importance in several fields of science and technology with applications in frequency conversion, entangled‐photon generation, self‐referencing of frequency combs, crystal characterization, sensing, and ultra‐short light pulse generation and characterization. In recent years, layered materials and related heterostructures have attracted huge attention in this field, due to their huge nonlinear optical susceptibilities, their ease of integration on photonic platforms, and their 2D nature which relaxes the phase‐matching constraints and thus offers a practically unlimited bandwidth for parametric nonlinear processes. In this review the most recent advances in this field, highlighting their importance and impact both for fundamental and technological aspects, are reported and explained, and an outlook on future research directions for nonlinear optics with atomically thin materials is provided.
MoSe2/WSe2 transition metal dichalcogenide heterostructures host spatially-indirect interlayer excitons (ILX) following interlayer charge transfer (ICT). We perform ultrafast transient absorption spectroscopy directly probing the ILX formation time and find it to be significantly longer than ICT.
Vertical heterostructures (HS) of transition metal dichalcogenides (TMDs) host interlayer excitons (ILX), with electrons and holes residing in different layers. With respect to their intralayer counterparts, ILX feature much longer lifetimes and diffusion lengths, paving the way to excitonic optoelectronic devices operating at room temperature. While the recombination dynamics of ILX has been intensively studied, the formation process and its underlying physical mechanisms are still largely unexplored. Here we use ultrafast transient absorption spectroscopy with a white-light probe, spanning both intralayer and interlayer exciton resonances, to simultaneously capture and time-resolve interlayer charge transfer and ILX formation dynamics in a MoSe2/WSe2 HS. We find that the ILX formation timescale is nearly an order of magnitude (∼1 ps) longer than the interlayer charge transfer time (∼100 fs). Microscopic calculations attribute the relative delay to an interplay between phonon-assisted interlayer exciton cascade and subsequent cooling processes, and excitonic wave-function overlap. Our results provide an explanation to the efficient photocurrent generation observed in optoelectronic devices based on TMD HS, as the ILX have an opportunity to dissociate during their thermalization process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.