BackgroundThe level of systemic inflammation correlates with the severity of the clinical course of acute myocardial infarction (AMI). It has been shown that circulating cytokines and endothelial dysfunction play an important role in the process of clot formation. The aim of our study was to assess the concentration of various circulating cytokines, endothelial function and blood clotting in AMI patients depending on the blood flow through the infarction-related artery (IRA).MethodsWe included 75 patients with AMI. 58 presented with ST-elevation myocardial infarction (STEMI) and 17 had non-ST-elevation myocardial infarction (non-STEMI). A flow-mediated dilation test (FMD test), thrombodynamics and rotational thromboelastometry as well as assessment of 14 serum cytokines using xMAP technology were performed.FindingsNon-STEMI-patients were characterized by higher levels of MDC, MIP-1β, TNF-α. Moreover, we observed that patients with impaired blood flow through the IRA (TIMI flow 0-1) had higher average and initial clot growth rates, earlier onset of spontaneous clots, C-reactive protein (CRP) and IL-10 compared to patients with preserved blood flow through the IRA (TIMI flow 2-3). Patients with TIMI 2-3 blood flow had higher level of IP-10. IL-10 correlated with CRP and pro-inflammatory cytokines levels, initial clot growth rate and clot lysis time in TIMI 0-1 patients. All these differences were statistically significant.InterpretationWe demonstrated that concentrations of the inflammatory cytokines correlate not only with the form of myocardial infarction (STEMI or non-STEMI), but also with the blood flow through the infarct-related artery. Inflammatory response, functional state of endothelium, and clot formation are closely linked with each other. A combination of these parameters affects the patency of the infarct-related artery.
Coronavirus disease 2019 (COVID-19) is characterized by immune activation in response to viral spread, in severe cases leading to the development of cytokine storm syndrome (CSS) and increased mortality. Despite its importance in prognosis, the pathophysiological mechanisms of CSS in COVID-19 remain to be defined. Towards this goal, we analyzed cytokine profiles and their interrelation in regard to anti-cytokine treatment with tocilizumab in 98 hospitalized patients with COVID-19. We performed a multiplex measurement of 41 circulating cytokines in the plasma of patients on admission and 3–5 days after, during the follow-up. Then we analyzed the patient groups separated in two ways: according to the clusterization of their blood cytokines and based on the administration of tocilizumab therapy. Patients with and without CSS formed distinct clusters according to their cytokine concentration changes. However, the tocilizumab therapy, administered based on the standard clinical and laboratory criteria, did not fully correspond to those clusters of CSS. Furthermore, among all cytokines, IL-6, IL-1RA, IL-10, and G-CSF demonstrated the most prominent differences between patients with and without clinical endpoints, while only IL-1RA was prognostically significant in both groups of patients with and without tocilizumab therapy, decreasing in the former and increasing in the latter during the follow-up period. Thus, CSS in COVID-19, characterized by a correlated release of multiple cytokines, does not fully correspond to the standard parameters of disease severity. Analysis of the cytokine signature, including the IL-1RA level in addition to standard clinical and laboratory parameters may be useful to define the onset of a cytokine storm in COVID-19 as well as the indications for anti-cytokine therapy.
The molecular mechanisms underlying cardiovascular complications after the SARS-CoV-2 infection remain unknown. The goal of our study was to analyze the features of blood coagulation, platelet aggregation, and plasma proteomics in COVID-19 convalescents with AMI. The study included 66 AMI patients and 58 healthy volunteers. The groups were divided according to the anti-N IgG levels (AMI post-COVID (n = 44), AMI control (n = 22), control post-COVID (n = 31), and control (n = 27)). All participants underwent rotational thromboelastometry, thrombodynamics, impedance aggregometry, and blood plasma proteomics analysis. Both AMI groups of patients demonstrated higher values of clot growth rates, thrombus size and density, as well as the elevated levels of components of the complement system, proteins modifying the state of endothelium, acute-phase and procoagulant proteins. In comparison with AMI control, AMI post-COVID patients demonstrated decreased levels of proteins connected to inflammation and hemostasis (lipopolysaccharide-binding protein, C4b-binding protein alpha-chain, plasma protease C1 inhibitor, fibrinogen beta-chain, vitamin K-dependent protein S), and altered correlations between inflammation and fibrinolysis. A new finding is that AMI post-COVID patients opposite the AMI control group, are characterized by a less noticeable growth of acute-phase proteins and hemostatic markers that could be explained by prolonged immune system alteration after COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.