The article describes the theory and technique of addressed fiber Bragg structures and a new class of microwave-photonic sensory systems based thereon, the distinctive feature of which is that the fiber Bragg structure forms two ultra-narrowband frequency components separated by a unique address frequency spacing. The offset of the central frequencies of the Bragg structures is determined via processing a beat signal of the address frequencies on the photodetector, with its parameters making it possible to evaluate the physical fields applied. We formulate and solve a problem of unambiguously determining the central (Bragg) frequency shift of the addressed fiber Bragg structures with unique address frequencies and the same Bragg frequency. These are then combined into a single multi-sensor system with multiplexed response reception on a single photodetector.
The new theory and technique of Multi-Addressed Fiber Bragg Structure (MAFBS) usage in Microwave Photonics Sensor Systems (MPSS) is presented. This theory is the logical evolution of the theory of Addressed Fiber Bragg Structure (AFBS) usage as sensors in MPSS. The mathematical model of additive response from a single MAFBS is presented. The MAFBS is a special type of Fiber Bragg Gratings (FBG), the reflection spectrum of which has three (or more) narrow notches. The frequencies of narrow notches are located in the infrared range of electromagnetic spectrum, while differences between them are located in the microwave frequency range. All cross-differences between optical frequencies of single MAFBS are called the address frequencies set. When the additive optical response from a single MAFBS, passed through an optic filter with an oblique amplitude–frequency characteristic, is received on a photodetector, the complex electrical signal, which consists of all cross-frequency beatings of all optical frequencies, which are included in this optical signal, is taken at its output. This complex electrical signal at the photodetector’s output contains enough information to determine the central frequency shift of the MAFBS. The method of address frequencies analysis with the microwave-photonic measuring conversion method, which allows us to define the central frequency shift of a single MAFBS, is discussed in the work.
This paper presents a novel method for characterization of gain spectrum of stimulated Mandelstam-Brillouin scattering (SMBS) in single-mode optical fiber. This method is based on the usage of double-frequency probing radiation. For conversion of the complex SBS spectrum from optical to the electrical field single-sideband modulation is used. Detection of double-frequency components position in the gain spectrum occurs through the amplitude modulation index of the envelope and the phase difference between envelopes of probing and passing components.
The work presents an approach to instrument the load-sensing bearings for automotive applications for estimation of the loads acting on the wheels. The system comprises fiber-optic sensors based on addressed fiber Bragg structures (AFBS) with two symmetrical phase shifts. A mathematical model for load–deformation relation is presented, and the AFBS interrogation principle is described. The simulation includes (i) modeling of vehicle dynamics in a split-mu braking test, during which the longitudinal wheel loads are obtained, (ii) the subsequent estimation of bearing outer ring deformation using a beam model with simply supported boundary conditions, (iii) the conversion of strain into central frequency shift of AFBS, and (iv) modeling of the beating signal at the photodetector. The simulation results show that the estimation error of the longitudinal wheel force from the strain data acquired from a single measurement point was 5.44% with a root-mean-square error of 113.64 N. A prototype load-sensing bearing was instrumented with a single AFBS sensor and mounted in a front right wheel hub of an experimental vehicle. The experimental setup demonstrated comparable results with the simulation during the braking test. The proposed system with load-sensing bearings is aimed at estimation of the loads acting on the wheels, which serve as input parameters for active safety systems, such as automatic braking, adaptive cruise control, or fully automated driving, in order to enhance their effectiveness and the safety of the vehicle.
This paper presents novel methods for multiple frequency characterization of stimulated Mandelstam-Brillouin gain spectrum (SMBGS) in single-mode optical fiber. This method is based on the usage of multiple frequencies probing radiation. For conversion of the complex SMBGS from optical to the electrical field single-sideband modulation, direct or heterodyne detection are used. Determining of a multiple frequencies positions over the gain spectrum occurs through the amplitude modulation index of the envelope or the phase difference between envelopes of probing and passing components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.