Raspberry is a valuable berry crop containing a large amount of antioxidants that correlates with the color of the berries. We evaluated the genetic diversity of differently colored raspberry cultivars by the microsatellite markers developed using the flavonoid biosynthesis structural and regulatory genes. Among nine tested markers, seven were polymorphic. In total, 26 alleles were found at seven loci in 19 red (Rubus idaeus L.) and two black (R. occidentalis L.) raspberry cultivars. The most polymorphic marker was RiMY01 located in the MYB10 transcription factor intron region. Its polymorphic information content (PIC) equalled 0.82. The RiG001 marker that previously failed to amplify in blackberry also failed in black raspberry. The raspberry cultivar clustering in the UPGMA dendrogram was unrelated to geographical and genetic origin, but significantly correlated with the color of berries. The black raspberry cultivars had a higher homozygosity and clustered separately from other cultivars, while at the same time they differed from each other. In addition, some of the raspberry cultivars with a yellow-orange color of berries formed a separate cluster. This suggests that there may be not a single genetic mechanism for the formation of yellow-orange berries. The data obtained can be used prospectively in future breeding programs to improve the nutritional qualities of raspberry fruits.
Strawberry (Fragaria) and raspberry (Rubus) are very popular crops, and improving their nutritional quality and disease resistance are important tasks in their breeding programs that are becoming increasingly based on use of functional DNA markers. We identified 118 microsatellite (simple sequence repeat-SSR) loci in the nucleotide sequences of flavonoid biosynthesis and pathogenesis-related genes and developed 24 SSR markers representing some of these structural and regulatory genes. These markers were used to assess the genetic diversity of 48 Fragaria and Rubus specimens, including wild species and rare cultivars, which differ in berry color, ploidy, and origin. We have demonstrated that a high proportion of the developed markers are transferable within and between Fragaria and Rubus genera and are polymorphic. Transferability and polymorphism of the SSR markers depended on location of their polymerase chain reaction (PCR) primer annealing sites and microsatellite loci in genes, respectively. High polymorphism of the SSR markers in regulatory flavonoid biosynthesis genes suggests their allelic variability that can be potentially associated with differences in flavonoid accumulation and composition. This set of SSR markers may be a useful molecular tool in strawberry and raspberry breeding programs for improvement anthocyanin related traits.
The Romanov breed was evaluated using immunological and genetic markers. The seven blood group systems were characterized with a greater accuracy than in previous works on sheep in the Russian Federation, and were compared to eight ruminant species. Unlike other breeds, Romanov sheep have more HBA than HBB alleles. The genotype number at the transferrin locus is limited to 3–4 compared to 6–11 in the other breeds. At the albumin locus, the majority of the identified genotypes were heterozygotes, unlike the other breeds studied. In the prealbumin locus, the Romanov breed was the only one where all the genotypes were heterozygous. In this breed, a polymorphism was established for two loci responsible for high ovulation rates. Based on different genetic markers, the prevalence of heterozygotes in the Romanov sheep could determine their higher viability. A cluster analysis showed the close proximity of 12 populations of the Romanov breed, as the breeding stock come from the Yaroslavl region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.