Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure.
Obesity is becoming the new pediatric epidemic. Non-alcoholic fatty liver disease (NAFLD) is frequently associated with obesity, and has become the most common cause of pediatric liver disease. The gut microbiome is the major metabolic organ and determines how calories are processed, serving as a caloric gate, and contributing towards the pathogenesis of NAFLD. The goal of this study is to examine gut microbial profiles in children with NAFLD using phylogenetic, metabolomic, metagenomic, and proteomic approaches. Fecal samples were obtained from obese children with or without NAFLD and healthy lean children. Stool specimens were subjected to 16S rRNA gene microarray, shotgun sequencing, mass spectroscopy for proteomics, and NMR spectroscopy for metabolite analysis. Children with NAFLD had more abundant gamma-proteobacteria and Prevotella and significantly higher levels of short chain fatty acids, and ethanol. This group also had increased genomic and protein abundance for energy production with a reduction in carbohydrate and amino acid metabolism and urea cycle and urea transport systems. The metaproteome and metagenome showed similar findings. The gut microbiome in pediatric NAFLD is distinct from lean healthy children with more alcohol production and pathways allocated to energy metabolism over carbohydrate and amino acid metabolism, which would contribute to development of disease.
Human intestinal microbiota plays a number of important roles in human health and is also implicated in several gastrointestinal disorders. Though the diversity of human gut microbiota in adults and in young children has been examined, few reports of microbiota composition are available for adolescents. In this work we used Microbiota Array for high-throughput analysis of distal gut microbiota in adolescent children 11-18 years of age. Samples obtained from healthy adults were used for comparison. Adolescent and adult groups could be separated in principal components analysis space based on the relative species abundance of their distal gut microbiota. All samples were dominated by class Clostridia. A core microbiome of 46 species that were detected in all examined samples was established; members of genera Ruminococcus, Faecalibacterium, and Roseburia were well presented among core species. Comparison of intestinal microbiota composition between adolescents and adults revealed a statistically significantly higher abundance of genera Bifidobacterium and Clostridium among adolescent samples. The number of detected species was similar between sample groups indicating that it was relative abundances of the genera and not the presence or absence of a specific genus that differentiated adolescent and adult samples. In summary, contrary to the current belief, this study suggests that the gut microbiome of adolescent children is different from that of adults.
Escherichia coli strain MG1655 was chosen for sequencing because the few mutations it carries (ilvG rfb-50 rph-1) were considered innocuous. However, it has a number of growth defects. Internal pyrimidine starvation due to polarity of the rph-1 allele on pyrE was problematic in continuous culture. Moreover, the isolate of MG1655 obtained from the E. coli Genetic Stock Center also carries a large deletion around the fnr (fumaratenitrate respiration) regulatory gene. Although studies on DNA microarrays revealed apparent cross-regulation of gene expression between galactose and lactose metabolism in the Stock Center isolate of MG1655, this was due to the occurrence of mutations that increased lacY expression and suppressed slow growth on galactose. The explanation for apparent cross-regulation between galactose and N-acetylglucosamine metabolism was similar. By contrast, cross-regulation between lactose and maltose metabolism appeared to be due to generation of internal maltosaccharides in lactose-grown cells and may be physiologically significant. Lactose is of restricted distribution: it is normally found together with maltosaccharides, which are starch degradation products, in the mammalian intestine. Strains designated MG1655 and obtained from other sources differed from the Stock Center isolate and each other in several respects. We confirmed that use of other E. coli strains with MG1655-based DNA microarrays works well, and hence these arrays can be used to study any strain of interest. The responses to nitrogen limitation of two urinary tract isolates and an intestinal commensal strain isolated recently from humans were remarkably similar to those of MG1655.
Osmotic stress is known to increase the thermotolerance and oxidative-stress resistance of bacteria by a mechanism that is not adequately understood. We probed the cross-regulation of continuous osmotic and heat stress responses by characterizing the effects of external osmolarity (0.3 M versus 0.0 M NaCl) and temperature (43°C versus 30°C) on the transcriptome of Escherichia coli K-12. Our most important discovery was that a number of genes in the SoxRS and OxyR oxidative-stress regulons were up-regulated by high osmolarity, high temperature, or a combination of both stresses. This result can explain the previously noted cross-protection of osmotic stress against oxidative and heat stresses. Most of the genes shown in previous studies to be induced during the early phase of adaptation to hyperosmotic shock were found to be also overexpressed under continuous osmotic stress. However, there was a poorer overlap between the heat shock genes that are induced transiently after high temperature shifts and the genes that we found to be chronically up-regulated at 43°C. Supplementation of the high-osmolarity medium with the osmoprotectant glycine betaine, which reduces the cytoplasmic K ؉ pool, did not lead to a universal reduction in the expression of osmotically induced genes. This finding does not support the hypothesis that K ؉ is the central osmoregulatory signal in Enterobacteriaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.