A major pathway in the reaction between Fe(II) and H 2 O 2 at pH 6-7 in non-coordinating buffers exhibits inverse kinetic dependence on [H + ] and leads to oxidation of dimethyl sulfoxide (DMSO) to dimethyl sulfone (DMSO 2 ). This step regenerates Fe(II) and makes the oxidation of DMSO catalytic, a finding that strongly supports Fe(IV) as a Fenton intermediate at near-neutral pH. This Fe(IV) is a less efficient oxidant for DMSO at pH 6-7 than is (H 2 O) 5 FeO 2+ , generated by ozone oxidation of Fe(H 2 O) 6 2+ , in acidic solutions. Large concentrations of DMSO are needed to achieve significant turnover numbers at pH $ 6 owing to the rapid competing reaction between Fe(II) and Fe(IV) that leads to irreversible loss of the catalyst. At pH 6 and #0.02 mM Fe(II), the ratio of apparent rate constants for the reactions of Fe(IV) with DMSO and with Fe(II) is $10 4 . The results at pH 6-7 stand in stark contrast with those reported previously in acidic solutions where the Fenton reaction generates hydroxyl radicals. Under those conditions, DMSO is oxidized stoichiometrically to methylsulfinic acid and ethane. This path still plays a role (1-10%) at pH 6-7.
Figure 1. Mössbauer spectra of a sample at 4.2 K containing 250 mm Z, prepared by the rapid freeze-quench technique (see Supporting Information). The solid lines (red for Z, representing ca. 50 % of total Fe) are simulations based on Equation (2). The contribution from [Fe(H 2 O) 6 ] 3+ is shown in blue. We found the following parameters for Z: D = 9.7(7) cm À1 , A x /g n b n = A y / g n b n = À20.3(3) T, DE Q = À0.33(3) mm s À1 , d = 0.38(2) mm s À1. For the 8.0-T spectrum, the theoretical curves for Z and [Fe(H 2 O) 6 ] 3+ were added (black).
Oxidation of cyclobutanol by aqueous Fe(IV) generates cyclobutanone in approximately 70% yield. In addition to this two-electron process, a smaller fraction of the reaction takes place by a one-electron process, believed to yield ring-opened products. A series of aliphatic alcohols, aldehydes, and ethers also react in parallel hydrogen atom and hydride transfer reactions, but acetone and acetonitrile react by hydrogen atom transfer only. Precise rate constants for each pathway for a number of substrates were obtained from a combination of detailed kinetics and product studies and kinetic simulations. Solvent kinetic isotope effect for the self-decay of Fe(IV), kH2O/kD2O = 2.8, is consistent with hydrogen atom abstraction from water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.