Electrophoresis is a motion of charged dispersed particles relative to a fluid in a uniform electric field. The effect is widely used to separate macromolecules, to assemble colloidal structures and to transport particles in nano- and microfluidic devices and displays. Typically, the fluid is isotropic (for example, water) and the electrophoretic velocity is linearly proportional to the electric field. In linear electrophoresis, only a direct-current (d.c.) field can drive the particles. An alternating-current (a.c.) field is more desirable because it makes it possible to overcome problems such as electrolysis and the absence of steady flows. Here we show that when the electrophoresis is performed in a liquid-crystalline nematic fluid, the effect becomes strongly nonlinear, with a velocity component that is quadratic in the applied voltage and has a direction that generally differs from the direction of linear velocity. The new phenomenon is caused by distortions of the liquid-crystal orientation around the particle that break the fore-aft (or left-right) symmetry. The effect makes it possible to transport both charged and neutral particles, even when the particles themselves are perfectly symmetric (spherical), thus allowing new approaches in display technologies, colloidal assembly and separation, microfluidic and micromotor applications.
We study electric-field-induced dynamics of colloids in a nematic cell, experimentally and by computer simulations. Solid particles in the nematic bulk create director distortions of dipolar type. Elastic repulsion from the walls keeps the particles in the middle of cell. The ac electric field reorients the dipoles and lifts them to top or bottom, depending on dipole orientation. Once near the walls, the colloids are carried along two antiparallel horizontal directions by nematic backflow. Computer simulations of the backflow agree with the experiment.
We study phase separation from a nematic liquid crystal with spatially nonuniform director gradients. Particles of a phase-separated component, which is either an isotropic fluid (silicone oil) or a nonmesogenic photopolymer, accumulate in the regions with the strongest director distortions, thus reducing the overall energy of the system.
We report on an electrically controlled liquid-crystal-based variable optical lens filled with a dual-frequency nematic material. The lens design employs a hole-patterned electrode structure in a flat nematic cell. In order to decrease the lens switching time we maximize the dielectric torque by using a dual-frequency nematic material that is aligned at an angle approximately 45 degrees with respect to the bounding plates by obliquely deposited SiO(x), and by using an overdrive scheme of electrical switching. Depending on the frequency of the applied field, the director realigns either toward the homeotropic state (perpendicular to the substrates) or toward the planar state (parallel to the substrates), which allows one to control not only the absolute value of the focal length but also its sign. Optical performance of the liquid-crystal lens is close to that of an ideal thin lens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.