A series of strong polycations is synthesized through the anionic polymerization of 2-vinylpyridine, followed by subsequent quaternization of the resulting polymer. Polycations based on quaternized 2-vinylpyridine (PVPQs) with degrees of polymerization (DP) from 20 to 440 are adsorbed on the surface of small anionic liposomes. Liposome/PVPQ complexes are characterized by using a number of physicochemical methods. All PVPQs are totally adsorbed onto the liposome surface up to a certain concentration at which saturation is reached (which is specific for each PVPQ). The integrity of the adsorbed liposomes remains intact. Short PVPQs interact with anionic lipids localized on the outer membrane leaflet, whereas long PVPQs extract anionic lipids from the inner to outer leaflet. Complexes tend to aggregate, and the largest aggregates are formed when the initial charge of the liposomes is fully neutralized by the charge of the PVPQ. PVPQs with intermediate DPs demonstrate behavioral features of both short and long PVPQs. These results are important for the interpretation of the biological effects of cationic polymers and the selection of cationic polymers for biomedical applications.
A series of cationic diblock copolymers were synthesized via sequential anionic polymerization of 2-vinylpyridine and ethylene oxide and further quaternization of the resulting diblock copolymers with dimethyl sulfate. Diblock copolymers with a degree of polymerization (DP) of the cationic block equal to 40 and DP of the poly(ethylene oxide) (PEO) block equal to 45, 210 and 450, as well as a cationic homopolymer with DP = 40 (control), were adsorbed on the surface of anionic liposomes of 40-60 nm in diameter. The liposomes were constructed with egg lecithin admixed with 0.1 mole fraction of a doubly anionic lipid, cardiolipin. The liposome-polymer complexes were characterized using electrophoretic mobility measurements, dynamic light scattering, conductivity, fluorescence and UV spectroscopy, and differential scanning calorimetry. Adsorption of the polymers causes the liposomes to aggregate; the only exception is the diblock copolymer with DP of the PEO block of 450, which shows an aggregation-preventing effect. In all cases, the integrity of liposomes is retained upon their complexation with polymers. The diblock copolymer with a short PEO block induces clustering of anionic lipid in the outer leaflet of the membrane; this effect becomes less pronounced with increasing DP of the PEO block. The differences in behaviour of the diblock copolymers are explained in terms of copolymer cluster formation via hydrogen bonding between neighbouring PEO blocks. These observations are important for interpretation of biological effects produced by cationic polymers and selection of cationic polymers for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.