This work introduces the PYXAID program, developed for non-adiabatic molecular dynamics simulations in condensed matter systems. By applying the classical path approximation to the fewest switches surface hopping approach, we have developed an efficient computational tool that can be applied to study photoinduced dynamics at the ab initio level in systems composed of hundreds of atoms and involving thousands of electronic states. The technique is used to study in detail the ultrafast relaxation of hot electrons in crystalline pentacene. The simulated relaxation occurs on a 500 fs time scale, in excellent agreement with experiment, and is driven by molecular lattice vibrations in the 200-250 cm(-1) frequency range. The PYXAID program is organized as a Python extension module and can be easily combined with other Python-driven modules, enhancing user-friendliness and flexibility of the software. The source code and additional information are available on the Web at the address http://gdriv.es/pyxaid . The program is released under the GNU General Public License.
The mean-field treatment of electron-nuclear interaction results in many qualitative breakdowns in the time-dependent Kohn-Sham (TDKS) density functional theory. Examples include current-induced heating in nanoelectronics, charge dynamics in quantum dots and carbon nanotubes, and relaxation of biological chromophores. The problem is resolved by the trajectory surface-hopping TDKS approach, which is illustrated by the photoinduced electron injection from a molecular chromophore into TiO2, and the excited-state relaxation of the green fluorescent protein chromophore.
In our previous work [J. Chem. Theory Comput. 2013, 9, 4959], we introduced the PYXAID program, developed for the purpose of performing nonadiabatic molecular dynamics simulations in large-scale condensed matter systems. The methodological aspects and the basic capabilities of the program have been extensively discussed. In the present work, we perform a thorough investigation of advanced capabilities of the program, namely, the advanced integration techniques for the time-dependent Schrodinger equation (TD-SE), the decoherence corrections via decoherence-induced surface hopping, the use of multiexciton basis configurations, and the direct simulation of photoexcitation via explicit light-matter interaction. We demonstrate the importance of the mentioned features by studying the electronic dynamics in a variety of systems. In particular, we demonstrate that the advanced integration techniques for solving TD-SE may lead to a significant speedup of the calculations and provide more stable solutions. We show that decoherence is necessary for accurate description of slow relaxation processes such as electron-hole recombination in solid C60. By using multiexciton configurations and direct, nonperturbative treatment of field-matter interactions, we found nontrivial optimality conditions for the multiple exciton generation in a small silicon cluster.
A simple surface hopping method for nonadiabatic molecular dynamics is developed. The method derives from a stochastic modeling of the time-dependent Schrödinger and master equations for open systems and accounts simultaneously for quantum mechanical branching in the otherwise classical (nuclear) degrees of freedom and loss of coherence within the quantum (electronic) subsystem due to coupling to nuclei. Electronic dynamics in the Hilbert space takes the form of a unitary evolution, intermittent with stochastic decoherence events that are manifested as a localization toward (adiabatic) basis states. Classical particles evolve along a single potential energy surface and can switch surfaces only at the decoherence events. Thus, decoherence provides physical justification of surface hopping, obviating the need for ad hoc surface hopping rules. The method is tested with model problems, showing good agreement with the exact quantum mechanical results and providing an improvement over the most popular surface hopping technique. The method is implemented within real-time time-dependent density functional theory formulated in the Kohn-Sham representation and is applied to carbon nanotubes and graphene nanoribbons. The calculated time scales of non-radiative quenching of luminescence in these systems agree with the experimental data and earlier calculations.
This review describes recent research into the properties of the chromophore-TiO2 interface that forms the basis for photoinduced charge separation in dye-sensitized semiconductor solar cells. It focuses particularly on an atomistic picture of the electron-injection dynamics. The interface offers an excellent case study, pertinent as well to a variety of other photovoltaic systems, photo- and electrochemistry, molecular electronics, analytical detection, photography, and quantum confinement devices. The differences between chemists' and physicists' models for describing molecules and bulk materials, respectively, create challenges for the characterization of interfaces that include both of these components. We give an overall picture of the interface by starting with a description of the properties of the chromophores and semiconductor separately, and then by discussing the coupled system, including the chromophore-semiconductor binding, electronic structure, and electron-injection dynamics. Explicit time-dependent modeling is particularly valuable for an understanding of the ultrafast electron injection because it shows a variety of individual injection events with well-defined dynamical features that cannot be made apparent by an average reaction-rate description.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.