The paper considers instantly coalescing, or instantly annihilating, systems of one-dimensional Brownian particles on the real line. Under maximal entrance laws, the distribution of the particles at a fixed time is shown to be Pfaffian point processes closely related to the Pfaffian point process describing one dimensional distribution of real eigenvalues in the real Ginibre ensemble of random matrices. As an application, an exact large time asymptotic for the n-point density function for coalescing particles is derived.
In this paper we show how the method of Zakharov transformations may be used to analyze the stationary solutions of the Smoluchowski aggregation equation with a source term for arbitrary homogeneous coagulation kernel. The resulting power-law mass distributions are of Kolmogorov type in the sense that they carry a constant flux of mass from small masses to large. They are valid for masses much larger than the characteristic mass of the source. We derive a "locality criterion," expressed in terms of the asymptotic properties of the kernel, that must be satisfied in order for the Kolmogorov spectrum to be an admissible solution. Whether a given kernel leads to a gelation transition or not can be determined by computing the mass capacity of the Kolmogorov spectrum. As an example, we compute the exact stationary state for the family of kernels, K(zeta) ( m(1), m(2) )= ( m(1) m(2) )(zeta/2) which includes both gelling and nongelling cases, reproducing the known solution in the case zeta=0. Surprisingly, the Kolmogorov constant is the same for all kernels in this family.
We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.