Progressive hardware and software mean of paralleling and synchronization of calculations on modern computers with multicore architecture allow to increase the efficiency of computer modeling by increasing (by an order or more) the performance of calculations. The purpose of this work is to increase the efficiency of computational algorithms for the computer implementation of the sweep method by using modern advanced parallel programming techniques. The study used methods of matrix algebra, parallel computations, as well as analysis of the efficiency of algorithms and programs. As a result of the work, computational algorithms for sequential and parallelized in two threads sweep method were developed, and a comparative evaluation of the effectiveness of their implementation by means of thread control library <thread> C++ was performed. The order of SLAE in this case was up to 5×107. As a result of computational experiments, it was possible to achieve an increase in computational speed of 1.88-2.86 times. The results obtained correspond with similar data from available literature sources. The scientific novelty of the work lies in the subsequent development of promising approaches to increase the efficiency of computer simulation through the use of modern technologies and principles of parallel programming with computational experiments on modern hardware and software architectures. For the first time, estimates of the time of software implementation of algorithms for sequential and parallelized by means of the <thread> C++ library computational algorithms for the sweep method for a significant order of SLAE were obtained. The expediency of this paralleling is demonstrated for SLAEs of the order over 2.5×105. The main significance of the work lies in the practical application of the results obtained in computer simulation of engineering problems, the most resource-intensive stage of which is the multiple solution of SLAE of a significant order. Further prospects of research assume in-depth paralleling of algorithms for numerical solution of SLAE by using scalable variations of applied methods, choosing the most productive software technologies, paralleling the program code to the maximum (in terms of the number of processor cores) number of threads.
Аннотация. С целью выполнения актуальной и экономически обоснованной задачи определения соответствия входных технологических параметров определенным критериям безопасности ведения конвертерной плавки на основе математического моделирования и объектноориентированного программирования разработана компьютерная информационно-моделирующая система прогнозирования (ИМСП) теплового режима ствола верхней фурмы (СВФ) кислородного конвертера. Программа создана в виде Windows-ориентированного приложения путем уточнения ранее разработанной математической модели температурного режима ствола верхней конвертерной фурмы с использованием объектно-ориентированного языка программирования C# в IDE Microsoft Visual Studio 2019. Математическая модель предусматривает решение дифференциального уравнения теплопроводности в цилиндрических координатах (двумерная постановка) с заданием начальных (распределение температур в расчетной области) и граничных условий II и III рода (соответственно на наружной и внутренней поверхности СВФ). Конечно-разностную аппроксимацию уравнения теплопроводности и граничных условий получали интегро-интерполяционным методом (методом баланса). Для расчета температурного поля использовался численный метод прогонки (модифицированный метод Гаусса) и безусловно устойчивая неявная схема. Теплофизические величины получали аппроксимацией соответствующих табличных значений. Приложение не выдвигает особых требований к компьютерной инфраструктуре, функционирует локально (без необходимости доступа к Internet), не требует специальных навыков для работы с ним, имея интуитивный пользовательский интерфейс: рабочее поле программы состоит из трех окон (разделов), в которых отображаются результаты расчета теплового режима СВФ. Разработанная ИМСП позволяет оценивать конструктивные и технологические параметры работы верхнего дутьевого устройства в качестве критерия его безопасной эксплуатации. Ее применение в режиме «советчика» создает условия для оптимального проектирования верхних кислородных фурм с рациональной системой водяного охлаждения. Целью является обеспечение надлежащего теплового режима СВФ на протяжении всего времени эксплуатации, а также безаварийной работы продувочного устройства, что особенно актуально для условий конвертерных цехов Украины, оборудованных устаревшими конструкциями верхних фурм с низкой стойкостью.
On basis of mathematical modeling and object-oriented programming, a computer information-modeling forecasting system (IMFS) for thermal mode of top lance barrel (TLB) of oxygen converter was developed in order to fulfill the urgent and economically feasible task of determining the compliance of input technological parameters with certain safety criteria for conducting converter melting.The program was created in the form of a Windows-oriented application by refining the previously developed mathematical model of the temperature mode of the top converter lance barrel using the object-oriented programming language C# in Microsoft Visual Studio 2019 IDE. The mathematical model provides the solution of differential heat conduction equation in cylindrical coordinates (two-dimensional formulation) with assignment of the initial (temperature distribution in the computational domain) and boundary conditions of the II and III kind (respectively, on the outer and inner surfaces of the TLB). The finite-difference approximation of the heat conduction equation and boundary conditions was obtained by the integro-interpolation method (balance method). A numerical sweep method (modified Gauss method) and an unconditionally stable implicit scheme were used to calculate the temperature field. Thermophysical values were obtained by approximating the corresponding tabular values. The application does not put forward special requirements for the computer infrastructure, operates locally (without the need for access to Internet), does not require special skills to work with it, having an intuitive user interface: the working area of the program consists of three windows (sections), in which the results of calculating the thermal mode of the TLB are displayed. The developed IMFS allows evaluating the design and technological parameters of the top blowing device as a criterion for its safe operation. Its application in the “advisor” mode ensures the optimal design of the top oxygen lances with a rational water cooling system in order to ensure the proper thermal mode of the TLB throughout the entire operation period, as well as trouble-free operation of the blowing device, which is especially important for the conditions of converter shops in Ukraine equipped with outdated designs of top lances with low service life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.