The method for the choice of rational regimes of traffic light control is developed based on the minimization of the number of violations the requirements of traffic light signals by pedestrians depending on the volume-capacity ratio of traffic lanes and control of vehicular queue on the approach to the stop-line. Assessment of rationality is carried out considering the simultaneous impact of such factors as roadway volume-capacity ratio, traffic light restrictive signal duration, the number of violations of the traffic rules by pedestrians, and maximal queue length of vehicles. The model of the change of the number of violations of the rules of crossing the roadway by pedestrians depending on the volume-capacity ratio of different intersection types is developed in this paper. The model of determining the maximal vehicular queue length before intersections depending on the volume-capacity ratio and the share of the restrictive signal on the lane in the control cycle is developed. Recommendations about the choice of rational regimes of traffic light control depending on traffic delay, planning parameters of the road network, and pedestrian behavior are proposed.
There are different configurations of street and road networks in cities, which is why those transportation models that determine how effectively a public transport network is operated are different. Along with this, some transport areas may have characteristic features predetermined by the density of a street network, the intensity of individual and public traffic. The special feature of the current study is determining the operational effectiveness of dedicated lanes for public transport given a significant density of the main street and road network. Significant density is characterized by its value for the distance between adjacent intersections in the range of 150‒200 m. With such planning patterns, there is a mutual influence of the conditions of individual and public transport between adjacent intersections. An increase in the distance between intersections disrupts the stability of traffic flow through its disintegration into separate groups based on the dynamic characteristics of vehicles. A characteristic feature of the proposed procedure for evaluating the operational effectiveness of dedicated lanes is that the use of a GPS monitoring system makes it possible to relatively quickly determine the areas of the network where there are the greatest delays in movement in real time. After that, attention is focused on investigating the main factors of influence and their parameters followed by modeling. The reported results would in the future contribute to devising a clear sequence of transport-related research based on a set of their methods in order to acquire representative data and define adequate patterns. An important practical result is the use of not only established normative approaches to the design of dedicated lanes, which are common for all types of street and road networks but taking into consideration the peculiarities characteristic of their individual sections.
The article is devoted to the problem of the impact of street parking on delays and the average speed of traffic flow. The sections with different ways of putting vehicles near the roadway in the central part of Lviv city with the most saturated flow were exposed to scientific scrutiny. For this purpose, the program software PTV Vissim is used. The causes of the impact of street parking on traffic flow speed and roadway capacity are analyzed. Simulation model was created, with the use of which the operation of the street section where parking is allowed and without parking, and also the impact of the parking duration on the average speed of traffic flow and its delays were investigated. It is clarified that the least values the average traffic delay has with the parking duration of 900 and 1800 sec, and the biggest values it has with the duration of 300 sec. It is determined that during the street parking design parallel to the sidewalk it is necessary to implement the restriction of the parking duration to increase the road network capacity and traffic flow speed.
This article analyzes drivers' psychophysiological perception of information on the road and the advantages of using means of automatic use of signs (TSR). A survey of drivers was conducted on the road section where traffic organization changed. The drivers were chosen with different driving experiences, age categories, and needs for using the car, but they used the road section under investigation even before its reconstruction. Drivers of vehicles by age category were divided into three categories: under 25 years of age (category 1), 42% of drivers aged 26 to 50 years (category 2), and 19% of drivers aged 50 and older (category 3). It was established that 47% of the first drivers' category use automatic road sign recognition tools, 31% of the second category use the TSR system, and only 22% of the third category use the road sign recognition system. Four new road signs were installed during the development of the design schemes for organizing traffic in the middle section at a distance of 50 m. Based on this, an additional survey was conducted on drivers' memorization of specific new signs installed on the investigated section of the road. The results of the survey of drivers of different age categories were taken into account. It was studied that the most perceived number of road signs for the third category of drivers are observed at a distance of 50 to 150 m. At a distance of 50 to 150 m, they concentrate their attention, and after 150 m, they forget about the changed scheme in the traffic organization. In conclusion, drivers, getting used to traffic routes, lose vigilance, and pay less attention to existing information signals, which causes them to make wrong decisions when changing traffic organization on certain road sections. It is proposed to use automatic road sign recognition tools that are not affected by external and internal factors to increase the reliability of drivers and ensure road safety.
The problem of capacity increasing of arterial streets with controlled motion is investigated in this paper. For investigation, sections between intersections on the road network of Lviv city were chosen at their different length and roadway width with most saturated traffic. Methods of capacity increasing of arterial streets with controlled motion and factors that have impact on the capacity reduction are analyzed. Capacity of intersections at different volume-capacity ratios is determined. The distribution of average speed for sections between intersections of different length is built. It is established that on sections of medium length between signalized intersections and the high volume-capacity ratio, the speed of traffic flow does not reach maximum values. It is possible to increase the speed and the capacity of sections between intersections by increasing their length, sufficient for flow acceleration to the maximal constant speed and further braking before the intersection. To determinate the recommended speed of movement on arterial directions, road conditions are taken into account, which are formed with simultaneous impact of several factors: volume-capacity ratio of intersection in braking zone, volume-capacity ratio of intersection in acceleration zone, the number of lanes, the length of the section between intersections and the average speed of the traffic flow. It is determined that the average speed of traffic flow on short sections between intersections (the length less than 300 m) is 27 – 33 km/h, on sections of medium length – 35 – 38 km/h/ Such speed will allow to traffic flow reaching the line of constant movement in given road conditions. Conducted research allows taking into account road traffic conditions while justifying the calculating speed of traffic flow, in result of which capacity of arterial streets of controlled motion increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.