The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ∼0.123, we find that a field (B∼10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B∼15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.
The strongly correlated insulator Ca2RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high-resolution oxygen K-edge resonant inelastic X-ray scattering study of the antiferromagnetic Mott insulating state of Ca2RuO4. A set of lowenergy (∼80 and 400 meV) and high-energy (∼ 1.3 and 2.2 eV) excitations are reported that show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modelling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveil the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by the Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2RuO4.Introduction. Spin-orbit coupling (SOC) is a central thread in the search for novel quantum material physics [1]. A particularly promising avenue is the combination of SOC and strong electron correlations in multiorbital systems. This scenario is realized in heavy transition metal oxides composed of 4d and 5d elements. Iridium-oxides (iridates) such as Sr 2 IrO 4 are prime examples of systems where SOC plays a defining role in shaping the Mott insulating ground state [2]. In fact, spin-orbit entanglement essentially outplays the effectiveness of the usually influential crystal field δ. Of equal interest is the complex regime where SOC and crystal field energy scales are comparable. Here Ca 2 RuO 4 is a topical material that displays a wealth of physical properties. A record high non-superconducting diamagnetic response has, for example, been reported recently [3]. Superconductivity emerges in strained films [4] or upon application of hydrostatic pressure to bulk crystals [5]. Neutron and Raman scattering experiments have demonstrated both phase and amplitude spin-excitation modes consistent with the existence of a spin-orbit exciton [6][7][8]. Moreover, measurements of the paramagnetic insulating band structure [9] were interpreted in favor of an orbitally differentiated band-Mott insulating ground state [10,11]. This rich phenomenology of Ca 2 RuO 4 is a manifestation of the interplay between multiple energy scales, specifically, the Coulomb interaction U , the Hund's coupling J H , the crystal field splitting δ and SOC λ. In particular, a tendency towards an orbital selective Mott state is expected to be driven by the Hund's coupling [12]. Furthermore, the band-Mott scenario is triggered by a
The quantum Hall effect (QHE) is traditionally considered to be a purely two-dimensional (2D) phenomenon. Recently, however, a three-dimensional (3D) version of the QHE was reported in the Dirac semimetal ZrTe5. It was proposed to arise from a magnetic-field-driven Fermi surface instability, transforming the original 3D electron system into a stack of 2D sheets. Here, we report thermodynamic, spectroscopic, thermoelectric and charge transport measurements on such ZrTe5 samples. The measured properties: magnetization, ultrasound propagation, scanning tunneling spectroscopy, and Raman spectroscopy, show no signatures of a Fermi surface instability, consistent with in-field single crystal X-ray diffraction. Instead, a direct comparison of the experimental data with linear response calculations based on an effective 3D Dirac Hamiltonian suggests that the quasi-quantization of the observed Hall response emerges from the interplay of the intrinsic properties of the ZrTe5 electronic structure and its Dirac-type semi-metallic character.
Phase transitions and symmetry are intimately linked. Melting of ice, for example, restores translation invariance. The mysterious hidden order (HO) phase of URu2Si2 has, despite relentless research efforts, kept its symmetry breaking element intangible. Here we present a high-resolution x-ray diffraction study of the URu2Si2 crystal structure as a function of hydrostatic pressure. Below a critical pressure threshold pc ≈ 3 kbar, no tetragonal lattice symmetry breaking is observed even below the HO transition THO = 17.5 K. For p > pc, however, a pressure-induced rotational symmetry breaking is identified with an onset temperatures TOR ∼ 100 K. The emergence of an orthorhombic phase is found and discussed in terms of an electronic nematic order that appears unrelated to the HO, but with possible relevance for the pressure-induced antiferromagnetic (AF) phase. Existing theories describe the HO and AF phases through an adiabatic continuity of a complex order parameter. Since none of these theories predicts a pressure-induced nematic order, our finding adds an additional symmetry breaking element to this long-standing problem.
A resonant inelastic x-ray scattering study of overdamped spin excitations in slightly underdoped La 2−x Sr x CuO 4 (LSCO) with x = 0.12 and 0.145 is presented. Three high-symmetry directions have been investigated: (1) the antinodal (0,0) → ( 1 2 ,0), (2) the nodal (0,0) → ( 1 4 , 1 4 ), and (3) the zone-boundary direction ( 1 2 ,0) → ( 1 4 , 1 4 ) connecting these two. The overdamped excitations exhibit strong dispersions along (1) and (3), whereas a much more modest dispersion is found along (2). This is in strong contrast to the undoped compound La 2 CuO 4 (LCO) for which the strongest dispersions are found along (1) and (2). The t − t − t − U Hubbard model used to explain the excitation spectrum of LCO predicts-for constant U/t-that the dispersion along (3) scales with (t /t) 2 . However, the diagonal hopping t extracted on LSCO using single-band models is low (t /t ∼ −0.16) and decreasing with doping. We therefore invoked a two-orbital (d x 2 −y 2 and d z 2 ) model which implies that t is enhanced. This effect acts to enhance the zone-boundary dispersion within the Hubbard model. We thus conclude that hybridization of d x 2 −y 2 and d z 2 states has a significant impact on the zone-boundary dispersion in LSCO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.