A series of novel 3-aryl-5H-pyrrolo[1,2-a]imidazole and 5H-imidazo[1,2-a]azepine quaternary salts were synthesized in 58–85% yields via the reaction of 3-aryl-6, 7-dihydro-5H-pyrrolo[1,2-a]imidazoles or 3-aryl-6,7,8,9-tetrahydro-5H-imidazo[1,2-a]azepines and various alkylating reagents. All compounds were characterized by 1H NMR, 13C NMR, and LC-MS. The conducted screening studies of the in vitro antimicrobial activity of the new quaternary salts derivatives established that 15 of the 18 newly synthesized compounds show antibacterial and antifungal activity. Synthesized 3-(3,4-dichlorohenyl)-1-[(4-phenoxyphenylcarbamoyl)-methyl]-6,7-dihydro-5H-pyrrolo[1,2-a]imidazol-1-ium chloride 6c possessed a broad activity spectrum towards Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Cryptococcus neoformans, with a high hemolytic activity against human red blood cells and cytotoxicity against HEK-293. However, compound 6c is characterized by a low in vivo toxicity in mice (LD50 > 2000 mg/kg).
Aim: To search the new analgesics we studied the antinociceptive activity of the new derivative 5H-pyrrolo [1,2-a]¬imidazole in comparison with this of the morphine and ketorolac. Material and Methods:The analgesia was evaluated on hot plate and tail-flick thermal nociceptive stimulation models by intragastric administration of ketorolac and by intramuscular injection of morphine. Results Conclusion:The obtained data may allow to suggest that on thermal nociceptive stimulation models the pyrodazol exceeds the ketorolac and on the hot plate models it is similar to the morphine hydrochloride.
SUMMARY The study of features of pharmacodynamics of a new analgesic is an important and urgent task of modern pharmacology. These data allow us to clarify the nosology for application of an analgesic and to create a theoretical background to optimize its use. An effect mediated by the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) activation can also be an effective mechanism of the analgesic action. We evaluated the possibility of TRPV1 participation in implementation of the analgesic effect with the antiviral action of amizonum during the experiment. It is known that amino acids Tyr511 and Ser512 are the main components of the active site of TRPV1. In this connection, dipeptide Tyr-Ser has been completely synthesized as a model of the active site of TRPV1. In the experiment model this was shown, using the spectrophotometric method, with the formation of the “capsaicin - Tyr- Ser” intermolecular complex at the level of the stability constant Kkor=0.998 and Kr=0.3•10-4 L/mol and the “amizonum - Tyr-Ser” weak intermolecular complex Kr=0.05•104 L/mol; Kkor= 0.995, respectively. The data verification was carried out in experiments in vitro (isolated ratportal vein) and in vivo (Tail-flick model), with the TRPV1 agonist. It was shown that the amplitude of smooth muscle (SM) contraction of the portal vein at a capsaicin concentration 0.1 μmol/L, 0.5 μmol/L capsazepine, and 1.0 μmol/L amizonum was +30.3±5.3%, -3.2± 2.7% and +7.1±3.2% from initial level, respectivelly. In a combined application of amizonum with capsaicin or capsazepine, the amplitude of contraction of the SM portal vein was 20.1± 1.3% and -3.0±1.4%, respectively. This indicates the absence of action of amizonum under combined use of capsaicinoids. The Tail-flick model showed atypical potentiation of the amizonum antinociception with the use of capsaicin. The obtained data suggest the low probability of the participation of TRPV1 in the implementation of the antinociceptive action of amizonum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.