X-ray fluorescence spectroscopy is a non-destructive technique employed for elemental analysis of a wide range of materials. Its advantages are especially valued in archaeometry, where portable instruments are available. Considering ancient glass, such instruments allow for the detection of some major, minor, and trace elements linked to the deliberate addition of specific components or to impurities in the raw materials of the glass batch. Besides some undoubted advantages, portable XRF (p-XRF) has some limitations that are addressed in this study. The performance assessment of four different p-XRF units and the reconciling of their output were conducted. The results show the limitations in cross-referencing the data obtained from each unit and suggest procedures to overcome the issues. The p-XRF units were tested on the set of Corning reference glasses and on a small set of archaeological glasses with known composition. The compatibility of the output was assessed using multivariate statistical tools. Such a workflow allows us to consider data from multiple sources in the same frame of reference.
У статті висвітлено результати вивчення скляних намистин з Ягорлицького поселення та зразків піску довкола нього. У досл ідженні використовувались методи природничих наук, а саме XRF, SEM-EDS та ICPMS. Хімічний склад намистин із золистого скла та піску свідчить про їх спорідненість за макроелементами та рідкісноземельними елементами. Отримані результати підтверджують гіпотезу А.С. Островерхова про місцеве виробництво скла.
Several types of (mostly) blue-green glass beads from Iron-Age archaeological sites in Central Italy were studied using a range of spectroscopic techniques: portable X-Ray Fluorescence spectrometry, Fibre Optics Reflectance Spectroscopy, Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectrometry, micro-Raman spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Complementary information was gathered from each technique and discussed in the frame of the archaeological typology of the objects. The systematic evaluation of the results allowed us to draw some conclusions on the raw materials employed for primary production and to highlight some provenance indicators in the glass. Some of the beads found in the Iron Age (IA) contexts were preliminarily attributed to the Final Bronze Age (FBA) production based on their typology, and the compositional data obtained in this work confirmed that they were low magnesium high potassium (LMHK) glass, typical of FBA in the Italian peninsula. Other beads were assigned to low magnesium glass (LMG) or high magnesium glass (HMG), thus giving further information on the fluxing agents employed in the Early Iron Age (EIA) and beyond. Colour variations among the beads reflected their chemical composition, with different bead typologies coloured in a specific way. In some instances, it was possible to establish different origins for the colouring raw materials. The provenance of the samples was difficult to place, but the chemical evidence suggested a subdivision within the raw glass used to produce the beads: for one set of samples, a local origin of the glass could be hypothesised, whereas several production sites in the Near East were suggested for most of the beads considered in this study. Some preliminary clues for the local working of imported glass were also highlighted for one typological group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.