The B.1.1.529 Omicron variant jeopardizes vaccines designed with early pandemic spike antigens. Here, we evaluated in mice the protective activity of the Moderna mRNA-1273 vaccine against B.1.1.529 before or after boosting with preclinical mRNA-1273 or mRNA-1273.529, an Omicron-matched vaccine. Whereas two doses of mRNA-1273 vaccine induced high levels of serum neutralizing antibodies against historical WA1/2020 strains, levels were lower against B.1.1.529 and associated with infection and inflammation in the lung. A primary vaccination series with mRNA-1273.529 potently neutralized B.1.1.529 but showed limited inhibition of historical or other SARS-CoV-2 variants. However, boosting with mRNA-1273 or mRNA-1273.529 vaccines increased serum neutralizing titers and protection against B.1.1.529 infection. Nonetheless, the levels of inhibitory antibodies were higher and viral burden and cytokines in the lung were slightly lower in mice given the Omicron-matched mRNA booster. Thus, in mice, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against B.1.1.529 infection with limited differences in efficacy measured.
Epidemiological studies of the COVID-19 pandemic have revealed evidence of cardiac involvement and documented that myocardial injury and myocarditis are predictors of poor outcomes. Nonetheless, little is understood regarding SARS-CoV-2 tropism within the heart and whether cardiac complications result directly from myocardial infection. Here, we develop a human engineered heart tissue model and demonstrate that SARS-CoV-2 selectively infects cardiomyocytes. Viral infection is dependent on expression of angiotensin-I converting enzyme 2 (ACE2) and endosomal cysteine proteases, suggesting an endosomal mechanism of cell entry. After infection with SARS-CoV-2, engineered tissues display typical features of myocarditis, including cardiomyocyte cell death, impaired cardiac contractility, and innate immune cell activation. Consistent with these findings, autopsy tissue obtained from individuals with COVID-19 myocarditis demonstrated cardiomyocyte infection, cell death, and macrophage-predominate immune cell infiltrate. These findings establish human cardiomyocyte tropism for SARS-CoV-2 and provide an experimental platform for interrogating and mitigating cardiac complications of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.