A D-band waveguide diplexer, implemented by silicon micromachining using releasable filling structure (RFS) technique to obtain high-precision geometries, is presented here for the first time. Prototype devices using this RFS technique are compared with devices using the conventional microfabrication process. The RFS technique allows etching large waveguide structures with nearly 90 • sidewall angles for the 400-µm-tall waveguides. The diplexer consists of two direct-coupled cavity six-pole bandpass filters, with the lower and the upper band at 130-134 and 141-148.5 GHz, respectively. The measured insertion loss of the two bands is 1.2 and 0.8 dB, respectively, and the measured return loss is 20 and 18 dB, respectively, across 85% of the passbands. The worst case adjacent channel rejection is better than 59 dB. The unloaded quality factors of a single cavity resonator are estimated from the measurements to reach 1400. Furthermore, for the RFS-based micromachined diplexer, an excellent agreement between measured and simulated data was observed, with a center frequency shift of only 0.8% and a bandwidth deviation of only 8%. In contrast to that, for the conventionally micromachined diplexer of this high complexity, the filter poles are not well controllable, resulting in a large center frequency shift of 3.5%, a huge bandwidth expanding of over 60%, a poor return loss of 6 and 10 dB for the lower and the upper band, respectively, and an adjacent channel rejection of only 22 dB.
This paper presents two silicon-micromachined narrowband 4 th order waveguide filter concepts with center frequency of 450 GHz, which are the first narrowband submillimeter-wave filters implemented in any technology with a fractional bandwidth as low as 1%. Both filters designs are highly compact and have axial port arrangements, so that they can be mounted directly between two standard waveguide flanges without needing any split-block interposers. The first filter concept contains two TM 110 dual-mode cavities of circular shape with coupling slots and perturbations arranged in two vertically stacked layers, while the second filter concept is composed of four TE 101 series resonators arranged in a folded, two-level topology without cross-couplings. Prototype devices are fabricated in a multilayer chip platform by high-precision, low-surface roughness deep-silicon etching on silicon-on-insulator wafers. The measured passband insertion loss of two prototype devices of the dual-mode circular-cavity filters is 2.3 dB, and 2.6 dB for three prototypes of the folded filter design. The corresponding extracted unloaded quality factors of the resonators are 786±7 and 703±13 respectively, which are the best so far reported for submillimeter-wave filters in any technology. The presented filters are extremely compact in terms of size; their footprints have areas of only 0.53 and 0.55 mm 2 , respectively, and the thickness between the waveguide flanges is 0.9 mm.
Abstract-In this paper, we present a microfabricated fourthorder sub-THz WR-3.4 bandpass waveguide filter based on TM110 dual-mode circular-shaped cavity resonators. The filter operates at the center frequency of 270 GHz with fractional bandwidth of 1.85% and two transmission zeros are introduced in the upper and in the lower stopband using a virtual negative coupling. The microchip filter is significantly more compact than any previous dual-mode designs at comparable frequencies, occupying less than 1.5 mm 2 . Furthermore, in contrast to any previous micromachined filter work, due to its axially arranged interfaces it can be directly inserted between two standard WR-3.4 rectangular-waveguide flanges, which vastly improves system integration as compared to previous micromachined filters; in particular no custom-made split-block design is required. The cavities are etched in the handle layer of a silicon-on-insulator (SOI) wafer, and coupling is realized through rectangular slots fabricated in the SOI device layer. Couplings of the degenerate modes in one cavity are facilitated by means of small perturbations in the circular cavity shapes. The measured average return loss in the passband is -18 dB and worst-case return loss is -15 dB, and an insertion loss of only 1.5 dB was measured. The excellent agreement between measured and simulated data is facilitated by fabrication accuracy, design robustness and micromachined self-alignment geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.