Acid sensing ion channels 1a (ASIC1a) are of crucial importance in numerous physiological and pathological processes in the brain. Here we demonstrate that novel 2-oxo-2H-chromene-3-carboxamidine derivative 5b, designed with molecular modeling approach, inhibits ASIC1a currents with an apparent IC50 of 27 nM when measured at pH 6.7. Acidification to 5.0 decreases the inhibition efficacy by up to 3 orders of magnitude. The 5b molecule not only shifts pH dependence of ASIC1a activation but also inhibits its maximal evoked response. These findings suggest that compound 5b binds to pH sensor of ASIC1a acting as orthosteric noncompetitive antagonist. At 100 nM, compound 5b completely inhibits induction of long-term potentiation (LTP) in CA3-CA1 but not in MF-CA3 synapses. These findings support the knockout data indicating the crucial modulatory role of ASIC1a channels in the NMDAR-dependent LTP and introduce a novel type of ASIC1a antagonists.
Acid-sensing ion channels (ASICs) play an important role in numerous functions in the central and peripheral nervous systems ranging from memory and emotions to pain. The data correspond to a recent notion that each neuron and many glial cells of the mammalian brain express at least one member of the ASIC family. However, the mechanisms underlying the involvement of ASICs in neuronal activity are poorly understood. However, there are two exceptions, namely, the straightforward role of ASICs in proton-based synaptic transmission in certain brain areas and the role of the Ca(2+)-permeable ASIC1a subtype in ischaemic cell death. Using a novel orthosteric ASIC antagonist, we have found that ASICs specifically control the frequency of spontaneous inhibitory synaptic activity in the hippocampus. Inhibition of ASICs leads to a strong increase in the frequency of spontaneous inhibitory postsynaptic currents. This effect is presynaptic because it is fully reproducible in single synaptic boutons attached to isolated hippocampal neurons. In concert with this observation, inhibition of the ASIC current diminishes epileptic discharges in a low Mg(2+) model of epilepsy in hippocampal slices and significantly reduces kainate-induced discharges in the hippocampus in vivo Our results reveal a significant novel role for ASICs.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.