Purpose. Scientific substantiation of the expedient depth of mining the non-metallic deposits of rocky minerals on the basis of mathematical and statistical methods, which will ensure resource-saving and rational use of natural resources. Methods. To solve the purpose set, the following methods are used: graphical-analytical – when optimizing the maximum depth of mining the deposits of building materials, and the method of mathematical modeling – for determining the maximum depth of mining the non-metallic deposits with internal dumping. By means of statistical processing according to systematized types of deposits, the patterns of a change in the maximum depth of mining the basic deposits, depending on the main parameters of the quarry field, have been studied. Findings. A new methodology, which is distinguished by taking into account in-pit dumping, has been developed for calculating the maximum depth of granite quarries, which most of all influences the efficiency of mining operations and the value of economic indicators while ensuring the maximum economic effect with the achievement of a rational maximum depth of mining the deposit. A new, theoretically substantiated methodology has been created for determining the maximum depth of mining the mineral deposits for the production of crushed-stone products while providing the resource- and land-saving during the quarry operation. Originality. For the first time for these deposits, the dependence of their maximum mining depth on the main parameters of the quarry field and the place of internal dumping of overburden rocks has been determined. This has become a determining factor in the appropriate mining of deep non-metallic deposits of building materials with internal dumping, which provides a minimal land disturbance. Practical implications. The research results have been tested and implemented in working projects for mining the Liubymivske, Chaplynske, Pervomaiske, Mykytivske, Trykratske and Novoukrainske granite deposits; as a result of additional mining of mineral reserves, their additional increment in the volume from 1 to 48 million m3 is possible, which will ensure 5-40 years of sustainable operation of the mining enterprise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.