Today's requirements for the training of specialists encourage the modernization of education through the introduction of new educational technologies, in particular the introduction of STEM (Science, Technology, Engineering and Mathematics). The article analyzes the aspects of the concept of STEM implementation in the educational sector of Ukraine. The analysis of scientific works on the development of STEM education allowed to establish the features of teaching physics, taking into account current trends in education. The components of STEM teaching of physics include means of blended learning in combination with cloud-based technologies. This concept is especially relevant in the context of the COVID-19 pandemic. Seven models of blended learning, which are the most common in educational practice in Ukraine, are analyzed. The concepts of compositional combination of full-scale experiment with the use of digital laboratories, cloud services and BYOD (Bring Your Own Device) technologies as tools for the implementation of blended learning in the STEM system are outlined. Guided by the recommendations of the state program to improve the quality of natural and mathematical education, the emphasis is on the use of modern experimental tools and digital laboratories. The use of digital laboratories makes it possible to organize a physical experiment at a fundamentally new level. An example of a complex study of mechanics using a digital laboratory, cloud services and BYOD technology is given. The results of the pedagogical experiment convincingly prove that the technologies of blended learning with the use of cloud services and BYOD tools are a powerful tool in the work of teachers.
The article deals with the formation of informational and digital competence of high school students. First and foremost, the existing digitalization strategies for society already approved in the world and in Ukraine, including the implementation of STEM education and the Digital Agenda, are considered. On the other hand, attention is paid to the inconsistency of the level of ownership and frequency of use of digital technologies with the requirements of these initiatives. The concept of informational and digital competence is analyzed in detail. Existing publications identify key components, skills and competencies required to achieve this competence. A survey is conducted to better understand the current situation. One of the tasks is to determine the level of use of digital information in the classroom by teachers and in students’ preparation at home. The second task was to show how developing students’ informational and digital competence can be done by active introduction of existing software and hardware in the educational process in physics, in particular, a laboratory workshop. The example of laboratory work carried out in educational institutions shows how modern software can be used to analyze the movement of bodies and determine the physical characteristics of this movement. The concrete ways of performing laboratory work, analyzing its results and drawing conclusions are given. It is in the combination of existing teaching practices with modern gadgets, specialized and general programs that the basic way of forming informational and digital competence is seen. Further ways of modernization and improvement of described methods for increasing the level of information and digital competence are proposed.
The article deals with the formation of informational and digital competence of high school students. First and foremost, the existing digitalization strategies for society already approved in the world and in Ukraine, including the implementation of STEM education and the Digital Agenda, are considered. On the other hand, attention is paid to the inconsistency of the level of ownership and frequency of use of digital technologies with the requirements of these initiatives. The concept of informational and digital competence is analyzed in detail. Existing publications identify key components, skills and competencies required to achieve this competence. A survey is conducted to better understand the current situation. One of the tasks is to determine the level of use of digital information in the classroom by teachers and in students’ preparation at home. The second task was to show how developing students’ informational and digital competence can be done by active introduction of existing software and hardware in the educational process in physics, in particular, a laboratory workshop. The example of laboratory work carried out in educational institutions shows how modern software can be used to analyze the movement of bodies and determine the physical characteristics of this movement. The concrete ways of performing laboratory work, analyzing its results and drawing conclusions are given. It is in the combination of existing teaching practices with modern gadgets, specialized and general programs that the basic way of forming informational and digital competence is seen. Further ways of modernization and improvement of described methods for increasing the level of information and digital competence are proposed.
The conditions and initiatives for the formation of digital competence, which are part of the reform of Ukrainian education, are analyzed. The possibilities of digital laboratory complexes as an effective tool for the formation of digital competence of students and pupils are identified. It is emphasized that the cost of such equipment is quite high, so the actual and effective alternative is to upgrade existing laboratory equipment with modern digital software and hardware components. The analysis of researches of domestic and foreign scientists is carried out, which gives grounds to assert that the problems of formation of digital competence can be formed, in particular in the process of modernization and use of the updated educational experiment in physics. The problems of effective methods of updating the educational physical experiment and its promotion of the development of information and digital competence of students and pupils are clarified. A modernized experimental setup for studying pendulum oscillations is described. The main characteristics and features of equipment manufacturing are considered, in particular the use of Arduino platform, means of microelectronic circuitry and three - dimensional prototyping. Practical recommendations for the use of the complex in a training experiment in physics are offered. The approbation of the complex in the educational process and research work was carried out, which confirmed the effectiveness of the use of modernized equipment as a tool for the formation of information and digital competence of pupils and students.
models in the students of the upper classes of secondary schools. The author considers the problems of improving the quality of basic knowledge formation based on physical modelling. Model formation levels are presented, namely, imaginary, computer, physical conceptual, mathematical, practically oriented. The research model is considered. It should contain an information model of the phenomenon, which includes visual, experimental and theoretical data on the basis of which the student makes a hypothesis about the physical phenomenon or process. The hypothesis includes testing the logical consequences, measurement errors, basic provisions of model construction. Based on the analysis of the hypothesis, the student draws conclusions about the physical phenomenon or process he is exploring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.