According to the authors point of view, absence of the accepted by metrological society software based on simple and understandable and at the same time flexible and multipurpose mathematical apparatus is one of the restrictions on the way to arrangement of international comprehensive comparisons with expanded group of participants (hereinafter — comprehensive comparisons). General methodology of measurements adjustment by the least square method (LSM) may be used for this mathematical apparatus. Software named «Metrology Network» is defined. It was used for repeated processing of measurement results during the key comparisons of EURAMET.L-K1.2011 «Measurement of gage blocks by interferometer». «Metrology Network» software allowed to estimate simply and quickly systematic measurement error components of the gage blocks length measurement by each laboratory. They are called multiplicative and additive measurement standards degrees of equivalence. «Metrology Network» allowed to estimate strictly by LSM the uncertainties of length measurement. Additive degrees of equivalence are considered substantial and constant characteristics of the measurement standards for many laboratories. Thus, they coincide for steel and ceramic gage blocks. These additive degrees of equivalence may be used as corrections in the process of calibration or as the reference values for further comparisons. The simulation of measurement results for international comprehensive comparisons with complicated structure was provided. For 120 laboratories divided into 12 groups, totally 2442 length measurements of the steel or ceramic gage blocks were provided. They form together 24 sets of 8 gage blocks and provide 24 loops of comparisons. Necessity to provide the adjustment by the least square method is caused by the fact that two subgroups from each group of three laboratories took part in two different related loops of comparison. As a conclusion, «Metrology Network» software easily managed this complicated task of adjustment. It allowed us to calculate each of 120 measurement standards additive degree of equivalence relative to the averaged zero for all measurement standards and multiplicative degree of equivalence relative to the averaged measurement unit.
The development of multipurpose measurement models is the precondition for software development for simultaneous adjustment of the large scope and complicated combinations of the measurement results by the least-squares method. Multipurpose measurement models for software can be a helpful tool for processing the final measurement results provided by different measurement methods applying the mentioned software; processing the measurement results of measurement standards comparisons, interlaboratory comparison, and calibration procedures; estimating the additive and multiplicative systematic components of measurement errors and their uncertainty; processing complicated combinations by binding or linking up of the interlaboratory comparison and calibration results in the time; simultaneous processing of the measurement results obtained by various methods e.g. by the method of direct measurements and comparisons; fast-changing the multipurpose measurement models from linear to non-linear type. Processing of the results by software based on the multipurpose measurement model algorithm can help to established a comprehensive measurement traceability network by pooling the single traceability chains.
The goal of the research is to improve the accuracy of measurement the volume and mass of oil and oil products by the stationary measuring tanks and ships’ tanks. It is possible to achieving this goal only by using the laser scanning at tanks calibration. Metrological and other technical requirements for laser scanners have been developed. It is proved by the results of mathematical modeling that only the compliance of scanners with the developed requirements makes it possible to achieve the set goal. It has been developed methods of measurements by laser scanners that allow to achieve an increase in the accuracy of determination the interval capacities of all types of the tanks. Methods, formulae and algorithms for interval capacities of tanks calculation are very complicated. Therefore, the interlaboratory comparisons for the interval capacities, calculated by laboratories own software developed for processing the results of the specified calibration are proposed. It is concluded that the developed requirements, methods and algorithms will allow, in several times, to increase the accuracy of determining the interval capacities of the tanks with a significant reduction in time for measurements and processing of their results.
The method for processing of the measurement results obtained from Comite International des Poids et Measures (CIPM) Key, Regional Metrology Organizations (RMO) or supplementary comparisons, from the proficiency testing by interlaboratory comparisons and the calibrations is proposed. It is named by authors as adjustment by least square method (LSM). Additive and multiplicative parameters for each measuring standard of every particular laboratory will be the results of this adjustment. As well as the parameters for each artifact. The parameters of the measurements standards are their additive and multiplicative degrees of equivalence from the comparison and the estimations of the systematic errors (biases) from calibrations. The parameters of the artifacts are the key comparisons reference value from the comparison and the assigned quantity values from the calibrations. The adjustment is considered as a way to solving a problem of processing the great amount of homogeneous measurements with many measuring standards at a different comparison levels (CIPM, RMO or supplementary), including connected problems. Four different cases of the adjustments are considered. The first one is a free case of adjustment. It was named so because of the fact that none of participants has any advantage except their uncertainties of measurements. The second one is a fixed case of adjustment. Measuring results of RMO and supplementary comparisons are rigidly linked to additive and multiplicative parameters of measuring standards of particular laboratories participated in CIPM key comparisons. The third one is a case of adjustment with dependent equations. This one is not so rigidly linked of the new comparisons results to previous or to some other comparisons as for fixed case. It means that the new results of comparisons are influenced by the known additive and multiplicative parameters and vice versa. The fourth one is a free case of adjustment with additional summary equations. In that case certain checking equations are added to the system of equations. So, the sum of parameters multiplied by their weights of all measurement standards for particular laboratories participated in comparisons should be equal to zero.
Nature has often made necessary things simple (elementary) and complicated ones unnecessary. This can be applied to measurement models of the large amount of working measurement standards and working measuring instruments. Nevertheless, if measurement model is elementary, it does not mean that it is primitive. It should be formulated according to the sufficiency, mathematical completeness and correctness principles. The attempt to formulate models according to the mentioned principles is introduced. Models are called elementary, as measurement result is function of one or two homogeneous measured quantities. Thus, measurement result is a single reading of the measurement standard or measuring instrument or average value of several readings, or bias as the disparity between readings of the calibrated measuring instrument and measurement standard. Notwithstanding the elementary measurement models simplicity, many variants of solutions are obtained in the process of the measurement result uncertainty evaluation by these models. Publication demonstrates how to choose the best uncertainty evaluation from many variants of solutions depending on whether single readings or average of several readings is included to measurement model. The best choice of the measurement model depends on resolution of the indicating measuring instrument. Moreover, the best choice depends on the measurement standard used for calibration, which is material measure or measuring instrument and depends on the calibration object: material measure or measuring instrument.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.