Visual research of characteristic features and measurement of velocity and pressure fields of a vortex flow inside and nearby of a pair of the oval dimples on hydraulically smooth flat plate are conducted. It is established that depending on the flow regime inside the oval dimples, potential and vortex flows with ejection of vortex structures outside of dimples in the boundary layer are formed. In the conditions of a laminar flow, a vortex motion inside dimples is not observed. With an increase of flow velocity in dimples, boundary layer separation, shear layer, and potential and circulating flows are formed inside the oval dimples. In the conditions of the turbulent flow, the potential motion disappears, and intensive vortex motion is formed. The profiles of longitudinal velocity and the dynamic and wall-pressure fluctuations are studied inside and on the streamlined surface of the pair of oval dimples. The maximum wall-pressure fluctuation levels are pointed out on the aft walls of the dimples. The tonal components corresponding to oscillation frequencies of vortical flow inside the dimples and ejection frequencies of the large-scale vortical structures outside the dimples are observed in velocity and pressure fluctuation spectra.
The results of experimental research of the wall-pressure fluctuation field acting on the scour surface upstream of the prismatic pier model are presented. Experiments were carried out in the hydraulic flume with an open water surface and sandy bed. The spatial and temporal characteristics of the field of pseudosound the wall-pressure fluctuation were determined on the equilibrium scour surface upstream of the prismatic pier model, as well as the sources of their generation. Two quasistable large-scale horseshoe vortex formations occurred inside the scour hole in front of the bluff body. The first of them were generated in the separation of the boundary layer with the front edge of the scour hole and it formed the upper slope of the scour. A second smaller horseshoe formation were formed by the interaction of the shear layer beyond the scour hole and the down flow along the front surface of the prismatic model and it formed the lower slope of the scour. The highest intensity and level of spectral components of the wall-pressure fluctuation occurred inside the scour hole upstream of the prismatic pier model.
Experimental research results of hydrodynamic noise of pulsating flow through a bileaflet mechanical mitral valve are presented. The pulsating flow of pure water corresponds to the diastolic mode of the cardiac rhythm heart. The valve was located between the model of the left atrium and the model of the left ventricle of the heart. A coordinate device, on which a block of miniature sensors of absolute pressure and pressure fluctuations was installed, was located inside the model of the left ventricle. It is found that the hydrodynamic noise of the pulsating side jet of the semiclosed valve is higher than for the open valve. The pressure fluctuation levels gradually decrease with the removal from the mitral valve. It is established that at the second harmonic of the pulsating flow frequency, the spectral levels of the hydrodynamic noise of the semiclosed bileaflet mechanical mitral valve are almost 5 times higher than the open valve. With the removal from the mitral valve, spectral levels of hydrodynamic noise are decreased, especially strongly at the frequency of the pulsating water flow and its higher harmonics.
The formation of thrombi on the streamlined surface of the bileaflet mechanical heart valves is one of the main disadvantages of such valves. Thrombi block the valve leaflets and disrupt the cardiovascular system. Diagnosis of thrombosis of the bileaflet mechanical heart valves is relevant and requires the creation of effective diagnostic tools. Hydroacoustic registration of the heart noise is one of the methods for diagnosing the operation of a mechanical heart valve. The purpose of the research is to determine the statistical characteristics of the vortex and jet flow through the open and semi-closed bileaflet mechanical heart valve, to identify hydroacoustic differences and diagnostic signs to determine the operating conditions of the valve. Experimental studies were conducted in laboratory conditions on a model of the left atrium and left ventricle of the heart between which there was the bileaflet mechanical heart valve. Hydrodynamic noise was recorded by miniature pressure sensors, which were located downstream of the valve. The vortex and jet flow behind the prosthetic heart valve were non-linear, random processes and were analyzed using the methods of mathematical statistics and probability theory. The integral and spectral characteristics of the pressure field were obtained and the differences in the noise levels and their spectral components near the central and side jets for the open and semi-closed mitral valve were established. It was shown that hydroacoustic measurements could be an effective basis for developing diagnostic equipment for monitoring the bileaflet mechanical heart valve operation. Doi: 10.28991/SciMedJ-2020-0204-1 Full Text: PDF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.