The article reports about electric field-induced alignment of the carbon nanoparticles embedded in epoxy matrix. Optical microscopy was performed to consider the effect of the electric field magnitude and configuration, filler morphology, and aspect ratio on alignment process. Characteristic time of aligned network formation was compared with modeling predictions. Carbon nanotube and graphite nanoplatelet rotation time was estimated using an analytical model based on effective medium approach. Different depolarization factor was applied according to the geometries of the particle and electric field.Solid nanocomposites were fabricated by using AC electric field. We have investigated concentration dependence of electrical conductivity of graphite nanoplatelets/epoxy composites using two-probe technique. It was established that the electrical properties of composites with random and aligned filler distribution are differ by conductivity value at certain filler content and distinguish by a form of concentration dependence of conductivity for fillers with different morphology. These differences were explained in terms of the dynamic percolation and formation of various conductive networks: chained in case of graphite nanoplatelets and crossed framework in case of carbon nanotubes filler.
Synergistic effect causes significant decreasing of the percolation threshold in the ternary polymer composites filled with carbon nanotubes (CNT) and graphite nanoplatelets (GNP) in comparison with binary ones. Enhancement of the percolation threshold strongly depends only on the relative aspect ratios of the filler particles due to the formation of the bridges between puddles of the different filler components. Conditions of both appearance and fading away of the synergistic effect are investigated depending on the relative morphology of CNT or GNP components of the filler. Different lateral sizes, aspect ratios, and volume concentrations of both CNT and GNP in the selected ternary composites were considered. Conditions of the effective substitution of GNP with CNT and vice versa in equal volume concentrations without enlarging of the percolation threshold were established. The results are obtained numerically using the Monte Carlo simulation of the percolation threshold of the different ternary composites.
In the present work, we have investigated the concentration dependences of electrical conductivity of monopolymer composites with graphite nanoplatelets or multiwall carbon nanotubes and hybrid composites with both multiwall carbon nanotubes and graphite nanoplatelets. The latter filler was added to given systems in content of 0.24 vol%. The content of multiwall carbon nanotubes is varied from 0.03 to 4 vol%. Before incorporation into the epoxy resin, the graphite nanoplatelets were subjected to ultraviolet ozone treatment for 20 min. It was found that the addition of nanocarbon to the low-viscosity suspension (polymer, acetone, hardener) results in formation of two percolation transitions. The percolation transition of the composites based on carbon nanotubes is the lowest (0.13 vol%).It was determined that the combination of two electroconductive fillers in the low-viscosity polymer results in a synergistic effect above the percolation threshold, which is revealed in increase of the conductivity up to 20 times. The calculation of the number of conductive chains in the composite and contact electric resistance in the framework of the model of effective electrical resistivity allowed us to explain the nature of synergistic effect. Reduction of the electric contact resistance in hybrid composites may be related to a thinner polymer layer between the filler particles and the growing number of the particles which take part in the electroconductive circuit.
The electrical conductivity of polymer composites with mixture of fillers, i. e. graphite nanoplatelets and hexagonal boron nitride (BN), was investigated. The content of graphite nanoplatelets (prepared by ultrasonication of thermoexfoliated graphite) in composite materials varied from 2 to 10 wt%. The DC conductivity was measured by the two‐ or four‐probe methods in the temperature range of 77–293 K. A model of the electrical conductivity of composite materials was proposed. It takes into account the conductivity of the graphite particles, the contact resistance between particles, and the number of electrically conducting chains from graphite particles. In the framework of this model the number of graphite chains and the contact resistance of investigated composite materials were calculated. It was shown that the addition of boron nitride increases the number of electrically conducting chains from the graphite particles, decreases the value of contact resistance Rk between graphite particles that leads to smaller changes of contact resistance with increasing temperature, and weakens the temperature dependence of electrical conductivity of composite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.