The paper presents the study of the influence of the process of magneto-abrasive machining (MAM) on the characteristics of the surface layers of flat surfaces of parts made of ferromagnetic material U9 by machining with end-type heads based on high-power permanent magnets that form a magneto-abrasive tool of the "brush" type. For estimation of the influence of the process of magneto-abrasive machining on the surface layer, the parameters of surface hardness were analyzed after the machining of test samples with different powders and under different modes. The degree of influence of the MAM on the surface, both in terms of the hardness of the surface layer and the deformation of samples due to compressive residual stresses arising as a result of machining, was studied. The estimation of the state of the surface layer was performed by the change in hardness after machining, the magnitude of the degree of hardening, to some extent, by the parameters of roughness. The control of changes in internal residual stresses formed in the surface layers of samples due to the interaction of powder particles with the surface during machining was carried out according to the degree of their deformation after MAM. It was found that due to MAM, internal compressive stresses of 30–100 MPa arise in the near-surface layer of the material of the samples, while the magnitude of the stresses varied in inverse dependency, that is, with an increase in the working gap, in the vast majority of cases, a decrease in the magnitude of the stresses was observed. It was shown that the depth of the hardened layer under different machining conditions is up to 200 µm or more, and the strengthening coefficient varies from 10 to 40%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.