Single-particle luminescence microscopy is a powerful method to extract information on biological systems that is not accessible by ensemble-level methods. Upconversion nanoparticles (UCNPs) are a particularly promising luminophore for single-particle microscopy as they provide stable, non-blinking luminescence and allow the avoidance of biological autofluorescence by their anti-Stokes emission. Recently, ensemble measurements of diluted aqueous dispersions of UCNPs have shown the instability of luminescence over time due to particle dissolution-related effects. This can be especially detrimental for single-particle experiments. However, this effect has never been estimated at the individual particle level. Here, the luminescence response of individual UCNPs under aqueous conditions is investigated by quantitative wide-field microscopy. The particles exhibit a rapid luminescence loss, accompanied by large changes in spectral response, leading to a considerable heterogeneity in their luminescence and band intensity ratio. Moreover, the dissolution-caused intensity loss is not correlated with the initial particle intensity or band ratio, which makes it virtually unpredictable. These effects and the subsequent development of their heterogeneity can be largely slowed down by adding millimolar concentrations of sodium fluoride in buffer. As a consequence, the presented data indicate that microscopy experiments employing UCNPs in an aqueous environment should be performed under conditions that carefully prevent these effects.
Upconverting nanoparticles (UCNPs) are luminophores that have been investigated for a multitude of biological applications, notably low-background imaging, high-sensitivity assays, and cancer theranostics. In these applications, they are frequently used as a donor in resonance energy transfer (RET) pairs. However, because of the peculiarity and non-linearity of their luminescence mechanism, their behavior as a RET pair component has been difficult to predict quantitatively, preventing their optimization for subsequent applications. In this article, we assembled UCNP-organic dye RET systems and investigated their luminescence decays and spectra, with varying UCNP sizes and quantities of dyes grafted onto their surface. We observed an increase in RET efficiency with lower particle sizes and higher dye decoration. We also observed several unexpected effects, notably a quenching of UCNP luminescence bands that are not resonant with the absorption of organic dyes. We proposed a semi-empirical Monte Carlo model for predicting the behavior of UCNP-organic dye systems, and validated it by comparison with our experimental data. These findings will be useful for the development of more accurate UCNP-based assays, sensors, and imaging agents, as well as for optimization of UCNP-organic dye RET systems employed in cancer treatment and theranostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.