One of the biggest reasons that lead to violations of the security of companies’ services is obtaining access by the intruder to the legitimate accounts of users in the system. It is almost impossible to fight this since the intruder is authorized as a legitimate user, which makes intrusion detection systems ineffective. Thus, the task to devise methods and means of protection (intrusion detection) that would make it possible to identify system users by their behavior becomes relevant. This will in no way protect against the theft of the data of the accounts of users of the system but will make it possible to counteract the intruders in cases where they use this account for further hacking of the system. The object of this study is the process of protecting system users in the case of theft of their authentication data. The subject is the process of identifying users of the system by their behavior in the system. This paper reports a functional model of the process of ensuring the identification of users by their behavior in the system, which makes it possible to build additional means of protecting system users in the case of theft of their authentication data. The identification model takes into consideration the statistical parameters of user behavior that were obtained during the session. In contrast to the existing approaches, the proposed model makes it possible to provide a comprehensive approach to the analysis of the behavior of users both during their work (in a real-time mode) and after the session is over (in a delayed mode). An experimental study on the proposed approach of identifying users by their behavior in the system showed that the built patterns of user behavior using machine learning methods demonstrated an assessment of the quality of identification exceeding 0.95
The object of this article is the registration and analysis of human movements based on sensors. This paper presents a comparison of the basic methods of data processing from inertial micromechanical sensors to collect data a device was implemented that captures movements. As result the device uses the motion data from accelerometer and gyroscope to calculate the motion trajectory: the angle of rotation and acceleration. The data is read by the microcontroller, after which it is filtered and processed by one of the filters (Complementary, Kalman), and finally transferred to a computer for further analysis and display. The purpose of the article is to compare several methods of data processing from microelectromechanical. The results obtained: device was developed, obtained data that can be used to characterize the methods and analyze their work in the system. Conclusions: In the course of the study, a device was developed for collecting and processing data from MEMS sensors, which showed the effectiveness of the complementary filter in comparison with the Kalman filter in real-time systems with limited computing power. Real results confirmed that the results of the complementary method using less computational resources are not far behind the more costly Kalman filter without the use of auxiliary sensors, like a digital compass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.