Fluorescence lifetime imaging microscopy is an important technique that adds another dimension to intensity and color acquired by conventional microscopy. In particular, it allows for multiplexing fluorescent labels that have otherwise similar spectral properties. Currently, the only super-resolution technique that is capable of recording super-resolved images with lifetime information is stimulated emission depletion microscopy. In contrast, all single-molecule localization microscopy (SMLM) techniques that employ wide-field cameras completely lack the lifetime dimension. Here, we combine fluorescence-lifetime confocal laser-scanning microscopy with SMLM for realizing single-molecule localization-based fluorescence-lifetime super-resolution imaging. Besides yielding images with a spatial resolution much beyond the diffraction limit, it determines the fluorescence lifetime of all localized molecules. We validate our technique by applying it to direct stochastic optical reconstruction microscopy and points accumulation for imaging in nanoscale topography imaging of fixed cells, and we demonstrate its multiplexing capability on samples with two different labels that differ only by fluorescence lifetime but not by their spectral properties.
The in situ imaging of soft matter is of paramount importance for a detailed understanding of functionality on the nanoscopic scale. Although super-resolution fluorescence microscopy methods with their unprecedented imaging capabilities have revolutionized research in the life sciences, this potential has been far less exploited in materials science. One of the main obstacles for a more universal application of superresolved fluorescence microscopy methods is the limitation of readily available suitable dyes to overcome the diffraction limit. Here, we report a novel diarylethene-based photoswitch with a highly fluorescent closed and a nonfluorescent open form. Its photophysical properties, switching behavior, and high photostability make the dye an ideal candidate for photoactivation localization microscopy (PALM). It is capable of resolving apolar structures with an accuracy far beyond the diffraction limit of optical light in cylindrical micelles formed by amphiphilic block copolymers.The nanoscopic structure of soft-matter materials determines their properties. [1] Therefore, methods to directly visualize structures in the nanometer range are of paramount importance for the ongoing evolution of novel materials with specialized and adaptive properties for sophisticated applications. Scanning probe microscopy techniques give access to the nanometer range and determine surface properties such as topology and softness, [2,3] while modern electron microscopy methods, such as scanning electron microscopy (SEM) [4,5] and transmission electron microscopy (TEM), [6][7][8] can yield structural information even in the subnanometer range when there is sufficient electron density contrast. Despite the success of these methods, they are technically demanding and time-consuming. Furthermore, many softmatter samples possess poor electron contrast, and require non-invasive in situ imaging below the surface as well as the possibility to directly study dynamics. In recent years, superresolved fluorescence microscopy has revolutionized optical imaging, [9][10][11][12][13][14] by utilizing the photophysical or photochemical switching of fluorescent dyes in a sophisticated manner in combination with modern optics. So far, the life sciences have benefited, in particular, from the new possibilities of resolving structures well beyond the diffraction limit of light. Only a few examples of the application of super-resolution microscopy to materials science have been reported, [15][16][17][18] since concepts that require, for example, the addition of (polar) switching buffers often fail for these systems. Therefore, the main bottleneck for more universal applications of super-resolution imaging are switchable dyes with suitable (photo-)physical and chemical properties, such as high photostability, adjustable switching rates, minimum interaction with the environment to be probed, and simple design, with the possibility of multiple and straightforward derivatization for the specific labeling of structures or compartments. [19] ...
The in situ nanoscopic imaging of soft matter polymer structures is of importance to gain knowledge of the relationship between structure, properties, and functionality on the nanoscopic scale. Cross-linking of polymer chains effects the viscoelastic properties of gels. The correlation of mechanical properties with the distribution and amount of cross-linkers is relevant for applications and for a detailed understanding of polymers on the molecular scale. We introduce a super-resolution fluorescence-microscopy-based method for visualizing and quantifying cross-linker points in polymer systems. A novel diarylethene-based photoswitch with a highly fluorescent closed and a non-fluorescent open form is used as a photoswitchable cross-linker in a polymer network. As an example for its capability to nanoscopically visualize cross-linking, we investigate pNIPAM microgels as a system known with variations in internal cross-linking density.
Fluorescence lifetime imaging (FLIM) has become an important microscopy technique in bioimaging. The two most important of its applications are lifetime-multiplexing for imaging many different structures in parallel, and lifetime-based measurements of Forster resonance energy transfer. There are two principal FLIM techniques, one based on confocal-laser scanning microscopy (CLSM) and time-correlated single-photon counting (TCSPC) and the other based on wide-field microscopy and phase fluorometry. Although the first approach (CLSM-TCSPC) assures high sensitivity and allows one to detect single molecules, it is slow and has a small photon yield. The second allows, in principal, high frame rates (by 2−3 orders of magnitude faster than CLSM), but it suffers from low sensitivity, which precludes its application for single-molecule imaging. Here, we demonstrate that a novel wide-field TCSPC camera (LINCam25, Photonscore GmbH) can be successfully used for single-molecule FLIM, although its quantum yield of detection in the red spectral region is only ∼5%. This is due to the virtually absent background and readout noise of the camera, assuring high signal-to-noise ratio even at low detection efficiency. We performed single-molecule FLIM of different red fluorophores, and we use the lifetime information for successfully distinguishing between different molecular species. Finally, we demonstrate single-molecule metal-induced energy transfer (MIET) imaging which is a first step for three-dimensional single-molecule localization microscopy (SMLM) with nanometer resolution.
DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution technique highly suitable for multi-target (multiplexing) bio-imaging. However, multiplexed imaging of cells is still challenging due to the dense and sticky environment inside a cell. Here, we combine fluorescence lifetime imaging microscopy (FLIM) with DNA-PAINT and use the lifetime information as a multiplexing parameter for targets identification. In contrast to Exchange-PAINT, fluorescence lifetime PAINT (FL-PAINT) can image multiple targets simultaneously and does not require any fluid exchange, thus leaving the sample undisturbed and making the use of flow chambers/microfluidic systems unnecessary. We demonstrate the potential of FL-PAINT by simultaneous imaging of up to three targets in a cell using both wide-field FLIM and 3D time-resolved confocal laser scanning microscopy (CLSM). FL-PAINT can be readily combined with other existing techniques of multiplexed imaging and is therefore a perfect candidate for high-throughput multi-target bio-imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.