One of the main constructive elements of roadmakers, railway bridge supports and structures is a compressed rod, to the end of which a follower force is applied. Recently, the most frequently used model of such rod in the form of an inverted mathematical pendulum under the influence of an asymmetric follower force. Asymmetry is due to the simultaneous presence of both angular and linear eccentricities. The work is devoted to the study of vertical and non-vertical states of equilibrium of a single pendulum. The reduced mathematical model of a single inverted mathematical pendulum is generalized, since it takes into account both the angular eccentricity and the linear eccentricity of the follower force. In addition, the coefficients of influence allow to consider all types of elastic elements (rigid, soft or linear). In this case, both elements can have characteristics of the same type or of different types. For direct integration of the differential equation of the pendulum motion, and also the decoupling of the corresponding Cauchy problem, the authors use the method of extending the parameter of the outstanding Japanese scientist Y.A. Shinohara. Varying of the angular eccentricity of the follower force at zero linear eccentricity results in the inverted pendulum having one or three non-vertical equilibrium positions. The type of characteristics of the elastic elements affects the maximum possible deviation from the vertical, at which the pendulum will be in a state of equilibrium. Analysis of the results of computer simulation shows that the orientation of the follower force for fixed values of other parameters of the pendulum has a significant effect on the configuration of the equilibrium curve
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.