In the mining and industrial regions of Ukraine, a large amount of mine and quarry waters is formed. Due to high mineralization, they cannot be discharged into natural hydrographic objects without deep processing, including demineralization. Most of such waters are significantly contaminated with concentrates of sulfides and dissolved iron compounds, which hinder their further purification. At the same time, thermal power plants located in these regions consume a significant amount of scarce drinking water for their needs. Deep processing of mine and quarry waters allows to clean them and obtain feed water for heating systems, boilers of TPPs and CHPs. A method of obtaining stable inert titanium-based anodes with an active coating of PbO2, which do not contain noble metals and their compounds, has been developed. The method consists in protecting titanium from passivation with an oxide film by thermally applying a MnO2 coating, and later applying to the base with this coating a thin layer of PbO2 from an alkaline complex electrolyte containing 2.5 mol/dm3 NaOH, 0.6 mol/dm3 EDTA, ethylene glycol additive and is a saturated PbO. The main 3–5 mm thick layer of coating is applied from the nitrate electrolyte, which includes Pb(NO3)2 1 mol/dm3, Cu(NO3)2 0.4 mol/dm3, Al(NO3)3 0.2 mol/dm3 and the gelatin additive. A method of extending the service life of an alkaline electrolyte by reduction of Pb (IV) compounds during the contact with the active surface of metallic plumbum is described. The conducted resource tests of this anode for 1400 hours proved its stability when processing solutions containing a mixture of sodium sulfate and sodium chloride. On the basis of this anode, the technology of electrochemical deironing of mine waters and removal of sulfides from them before demineralization was developed and experimentally tested. This technology is the only possible method of reagent-free iron removal and removal of sulfides from waters with high mineralization. Such anodes significantly expand the scope of application of electrochemical processes. They can be used not only for water treatment in thermal power generation, but also for the treatment of wastewater of various mineral and organic composition, chemical and technological processes for obtaining oxidants, etc.
The article is aimed at researching the current problem of socioecology - the causes and consequences of possible resource depletion, as well as establishing the possibility of its averting. There are two classifications of natural resources from the point of view of ecology: according to their renewability and according to the possibility of use. Based on the concept of the Rouche limit, the law of the resource balance of society is formulated, which relates the social productivity of labor to the population density and the depletion of available natural resources. This law is another form of recording the balance of social production and consumption of resources. The consequences of its violation are shown.The effect of abiotic, biotic and anthropogenic factors on the rate of depletion of available natural resources is studied, and the decisive role of scientific and technological progress in the development of the resource base of society is shown. It was determined that scientific and technological progress is a decisive factor in averting a resource catastrophe by humanity and individual nations. The conducted study of the social structure allows us to draw a conclusion about the decisive role of industrial relations in the implementation of new scientific and technical solutions in production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.