Repbase Update is a comprehensive database of repetitive elements from diverse eukaryotic organisms. Currently, it contains over 3600 annotated sequences representing different families and subfamilies of repeats, many of which are unreported anywhere else. Each sequence is accompanied by a short description and references to the original contributors. Repbase Update includes Repbase Reports, an electronic journal publishing newly discovered transposable elements, and the Transposon Pub, a web-based browser of selected chromosomal maps of transposable elements. Sequences from Repbase Update are used to screen and annotate repetitive elements using programs such as Censor and RepeatMasker. Repbase Update is available on the worldwide web at http://www.girinst.org/Repbase_Update.html.
Repbase Update (RU) is a database of representative repeat sequences in eukaryotic genomes. Since its first development as a database of human repetitive sequences in 1992, RU has been serving as a well-curated reference database fundamental for almost all eukaryotic genome sequence analyses. Here, we introduce recent updates of RU, focusing on technical issues concerning the submission and updating of Repbase entries and will give short examples of using RU data. RU sincerely invites a broader submission of repeat sequences from the research community.Electronic supplementary materialThe online version of this article (doi:10.1186/s13100-015-0041-9) contains supplementary material, which is available to authorized users.
BackgroundRepbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases.ResultsWe describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s), repeat sequences found in the query, and alignments.ConclusionCensor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at (RepbaseSubmitter) and (Censor).
DNA methylation has important functions in stable, transcriptional gene silencing, immobilization of transposable elements and genome organization. In Arabidopsis, DNA methylation can be induced by double-stranded RNA through the RNA interference (RNAi) pathway, a response known as RNA-directed DNA methylation. This requires a specialized set of RNAi components, including ARGONAUTE4 (AGO4). Here we show that AGO4 binds to small RNAs including small interfering RNAs (siRNAs) originating from transposable and repetitive elements, and cleaves target RNA transcripts. Single mutations in the Asp-Asp-His catalytic motif of AGO4 do not affect siRNA-binding activity but abolish its catalytic potential. siRNA accumulation and non-CpG DNA methylation at some loci require the catalytic activity of AGO4, whereas others are less dependent on this activity. Our results are consistent with a model in which AGO4 can function at target loci through two distinct and separable mechanisms. First, AGO4 can recruit components that signal DNA methylation in a manner independent of its catalytic activity. Second, AGO4 catalytic activity can be crucial for the generation of secondary siRNAs that reinforce its repressive effects.
Eukaryotic genomes contain vast amounts of repetitive DNA derived from transposable elements (TEs). Large-scale sequencing of these genomes has produced an unprecedented wealth of information about the origin, diversity, and genomic impact of what was once thought to be "junk DNA." This has also led to the identification of two new classes of DNA transposons, Helitrons and Polintons, as well as several new superfamilies and thousands of new families. TEs are evolutionary precursors of many genes, including RAG1, which plays a role in the vertebrate immune system. They are also the driving force in the evolution of epigenetic regulation and have a long-term impact on genomic stability and evolution. Remnants of TEs appear to be overrepresented in transcription regulatory modules and other regions conserved among distantly related species, which may have implications for our understanding of their impact on speciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.