Bilge and oily water (BOW) during vessel’s operation are the most large-tonnage type of waste and for their treatment all ships, in accordance with regulatory requirements [14], have to be equipped with special equipment – oily water separators. At sea vessel’s operating conditions three main directions of BOW cleaning are now used: physical, chemical and biological. The analysis of BOW separation methods based on these three directions has shown that it is very difficult to obtain secondary petrochemical products. In the article authors offer a new method for BOW separation which is based on the use of a hydrodynamic process of supercavitation with artificial ventilation of the cavitational cavern. With local origin in the flow of a supercavitating cavern, there will always be saturated water vapor inside of it. The process of permanent water vapor selection from the cavern will ultimately contribute to the production of highly concentrated mixture of secondary petroleum products from initial mixture of BOW. During the study of BOW separation process it was found that decreasing of the working pressure inside the working chamber of the cavitation separator have to be always compensated by an increase in the temperature of the processed multiphase flow.
Bilge and oily water (BOW) during vessel's operation are the most large‐tonnage type of waste and for their treatment all ships, in accordance with international regulatory requirements, have to be equipped with special equipment—oily water separators. At sea vessel's operating conditions three main directions of BOW cleaning are now used: physical, chemical and biological. The analysis of BOW separation methods based on these three directions has shown that it is very difficult to obtain secondary petrochemical products. In the article authors offer a new method for BOW separation which is based on the use of a hydrodynamic process of supercavitation with artificial ventilation of the cavitational cavern. With local origin in the flow of a supercavitating cavern, there will always be saturated water vapor inside of it. The process of permanent water vapor selection from the cavern will ultimately contribute to the production of highly concentrated mixture of secondary petroleum products from initial mixture of BOW. During the study of BOW separation process it was found that decreasing of the working pressure inside the working chamber of the cavitation separator have to be always compensated by an increase in the temperature of the processed multiphase flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.