The photoisomerization of self-assembled monolayers of azobenzene-containing alkanethiols, as well as of mixed monolayers of these substances with n-alkanethiol spacer molecules on Au surfaces, was studied by photoelectrochemical measurements and surface plasmon resonance spectroscopy. A strong dependence on the molecular structure of the adsorbates was found, specifically on the linker between the azobenzene moiety and the alkanethiol: while molecules with an amide group were photoinactive, those with an ether group exhibited pronounced, reversible photoisomerization in pure and mixed adlayers. Both trans-cis and cis-trans isomerization followed first-order kinetics with time constants that suggest high quantum efficiencies for these processes.
The photo-and thermally induced switching of well-ordered molecular arrays of free-standing functional groups, formed by self-assembly on Au surfaces, were studied by photoelectrochemical methods (cyclic voltammetry, chronoamperometry) and surface plasmon resonance spectroscopy. These molecular adlayers exhibit azobenzene functions mounted vertically on the surface via molecular platforms on the basis of triazatriangulenium. Detailed quantitative studies of the switching kinetics revealed that the photoinduced trans−cis isomerization of the azobenzene groups in these adlayers proceeds very fast and highly reversible. Cis−trans backisomerization by thermal relaxation occurs surprisingly 4−5 orders of magnitude faster than in solution. A rapid thermal cis−trans relaxation that dominates over the photoinduced processes is also supported by the pronounced increase of the cis fraction in the adlayers with irradiation intensity and the weak dependence of the isomerization time constants on the intensity. In complementary density functional theory calculations of the cis isomer on a Au cluster, no significant electron density depletion of the azo moiety, but strong electronic coupling of the switchable group with the Au substrate, were found. We propose that the latter leads to a spin exchange between conduction electrons in the metal and the azo moiety, enabling a relaxation mechanism that is forbidden for the free molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.