Highlights d Proteogenomics characterization of 218 pediatric brain tumor samples of 7 histologies d Proteomic clusters reveal actionable biological features spanning histological boundaries d Proteomics reveal downstream effects of DNA alterations not evident in transcriptomics d Kinase activity analyses provide insights into pathway activities and druggable targets
SUMMARY
Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)—many of which are refractory to current standard-of-care treatments—from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.
This cohort study evaluates the feasibility and utility of incorporating comparative gene expression information into the precision medicine framework for difficult-to-treat pediatric and young adult patients with cancer.
Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma and other cancers, while germline variants have recently been identified in seven patients with a syndrome associating cardiac, facial and digital anomalies with developmental delay. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants through identification and description of 45 new patients, and to determine the effects of the variants at a molecular level through transcriptomic analysis of patient fibroblasts.Methods We performed exome, targeted capture and Sanger sequencing in a series of patients with undiagnosed developmental disorders. Phenotypic and mutational comparisons Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation We hope you will consider our manuscript for publication in Genetics in Medicine and we look forward to hearing your response.
Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.