Changes in body temperature can profoundly affect survival. The dramatic longevity-enhancing effect of cold has long been known in organisms ranging from invertebrates to mammals, yet the underlying mechanisms have only recently begun to be uncovered. In the nematode Caenorhabditis elegans, this process is regulated by a thermosensitive membrane TRP channel and the DAF-16/FOXO transcription factor, but in more complex organisms the underpinnings of cold-induced longevity remain largely mysterious. We report that, in Drosophila melanogaster, variation in ambient temperature triggers metabolic changes in protein translation, mitochondrial protein synthesis, and posttranslational regulation of the translation repressor, 4E-BP (eukaryotic translation initiation factor 4E-binding protein). We show that 4E-BP determines Drosophila lifespan in the context of temperature changes, revealing a genetic mechanism for cold-induced longevity in this model organism. Our results suggest that the 4E-BP pathway, chiefly thought of as a nutrient sensor, may represent a master metabolic switch responding to diverse environmental factors.S tudies on the biological underpinnings of aging have uncovered numerous genetic and environmental factors regulating animal lifespan. Longevity-promoting genes include components of the insulin-like signaling pathway, the histone deacetylase Sir2, the GTPase Ras, TRP membrane channels, and transcription factors, among many others (1, 2). Environmental manipulations extending life include changes in nutrition (often referred to as caloric or dietary restriction), sexual/reproductive history, and ambient temperature (3-5).Of the factors known to impact aging, temperature is arguably the most promising. Lifespan extension by cold is evolutionarily conserved-documented in poikilotherms, such as worms and flies, and homeotherms, including mammals (4, 6-11)-and more robust than well-studied interventions such as dietary restriction (12, 13). However, the underlying mechanisms remain incompletely understood (10,14,15). In Caenorhabditis elegans, the effect of cold on survival involves the thermosensitive membrane channel TRPA-1 acting upstream of the DAF-16/FOXO transcription factor (14,15). This seminal finding countered the notion that longevity is the passive result of general thermodynamic changes, and favored instead the view that genetic pathways actively control lifespan in response to ambient temperature. However, these results have to date not been extended or replicated in other model organisms. Explanatory theories for the effect of cold on longevity include a reduction in reactive oxygen species generated by mitochondrial uncoupling proteins, suppression of autoimmune response, and changes in neuroendocrine factors (6,16,17), but these views remain largely speculative given the lack of further mechanistic insight into lifespan extension by cold in model organisms.We report that, in Drosophila, changes in temperature trigger a metabolic program impacting protein translation, mitochondrial prot...
Neurons exhibit a striking degree of functional diversity, each one tuned to the needs of the circuitry in which it is embedded. A fundamental functional dichotomy occurs in activity patterns, with some neurons firing at a relatively constant “tonic” rate, while others fire in bursts - a “phasic” pattern. Synapses formed by tonic vs phasic neurons are also functionally differentiated, yet the bases of their distinctive properties remain enigmatic. A major challenge towards illuminating the synaptic differences between tonic and phasic neurons is the difficulty in isolating their physiological properties. At theDrosophilaneuromuscular junction (NMJ), most muscle fibers are co-innervated by two motor neurons, the tonic “MN-Ib” and phasic “MN-Is”. Here, we employed selective expression of a newly developed botulinum neurotoxin (BoNT-C) transgene to silence tonic or phasic motor neurons. This approach revealed major differences in their neurotransmitter release properties, including probability, short-term plasticity, and vesicle pools. Furthermore, Ca2+imaging demonstrated ~two-fold greater Ca2+influx at phasic neuron release sites relative to tonic, along with enhanced synaptic vesicle coupling. Finally, confocal and super resolution imaging revealed that phasic neuron release sites are organized in a more compact arrangement, with enhanced stoichiometry of voltage-gated Ca2+channels relative to other active zone scaffolds. These data suggest that distinctions in active zone nano-architecture and Ca2+influx collaborate to differentially tune glutamate release at synapses of tonic vs phasic neuronal subtypes.
Neurons exhibit a striking degree of functional diversity, each one tuned to the needs of the circuitry in which it is embedded. A fundamental functional dichotomy occurs in activity patterns, with some neurons firing at a relatively constant “tonic” rate, while others fire in bursts - a “phasic” pattern. Synapses formed by tonic vs phasic neurons are also functionally differentiated, yet the bases of their distinctive properties remain enigmatic. A major challenge towards illuminating the synaptic differences between tonic and phasic neurons is the difficulty in isolating their physiological properties. At theDrosophilaneuromuscular junction (NMJ), most muscle fibers are co-innervated by two motor neurons, the tonic “MN-Ib” and phasic “MN-Is”. Here, we employed selective expression of a newly developed botulinum neurotoxin (BoNT-C) transgene to silence tonic or phasic motor neurons inDrosophilalarvae of either sex. This approach highlighted major differences in their neurotransmitter release properties, including probability, short-term plasticity, and vesicle pools. Furthermore, Ca2+imaging demonstrated ∼two-fold greater Ca2+influx at phasic neuron release sites relative to tonic, along with an enhanced synaptic vesicle coupling. Finally, confocal and super-resolution imaging revealed that phasic neuron release sites are organized in a more compact arrangement, with enhanced stoichiometry of voltage-gated Ca2+channels relative to other active zone scaffolds. These data suggest that distinctions in active zone nano-architecture and Ca2+influx collaborate to differentially tune glutamate release at tonic vs phasic synaptic subtypes.SIGNIFICANCE STATEMENT:“Tonic” and “phasic” neuronal subtypes, based on differential firing properties, are common across many nervous systems. Using a recently developed approach to selectively silence transmission from one of these two neurons, we reveal specialized synaptic functional and structural properties that distinguish these specialized neurons. This study provides important insights into how the input-specific synaptic diversity is achieved, which could have significant implications for the development of therapeutic interventions for neurological disorders that involve changes in synaptic function.
Peptidylarginine deiminase (PAD) modifies peptidylarginine and converts it to peptidylcitrulline in the presence of elevated calcium. Protein modification can lead to severe changes in protein structure and function, and aberrant PAD activity is linked to human pathologies. While PAD homologs have been discovered in vertebrates-as well as in protozoa, fungi, and bacteria-none have been identified in Drosophila melanogaster, a simple and widely used animal model for human diseases. Here, we describe the development of a human PAD overexpression model in Drosophila. We established fly lines harboring human PAD2 or PAD4 transgenes for ectopic expression under control of the GAL4/UAS system. We show that ubiquitous or nervous system expression of PAD2 or PAD4 have minimal impact on fly lifespan, fecundity, and the response to acute heat stress. Although we did not detect citrullinated proteins in fly homogenates, fly-expressed PAD4-but not PAD2-was active in vitro upon Ca 2+ supplementation. The transgenic fly lines may be valuable in future efforts to develop animal models of PAD-related disorders and for investigating the biochemistry and regulation of PAD function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.