In this chapter the authors propose an overview on contemporary artificial intelligence techniques designed for change detection in image and video sequences. A variety of image features have been analyzed for content presentation at a low level. In attempt towards high-level interpretation by a machine, a novel approach to image comparison has been proposed and described in detail. It utilizes techniques of salient point detection, video scene identification, spatial image segmentation, feature extraction and analysis. Metrics implemented for image partition matching enhance performance and quality of the results, which has been proved by several estimations. The review on estimation measures is also given along with references to publicly available test datasets. Conclusion is provided in relation to trends of future development in image and video processing.
A complete overview of key frame extraction techniques has been provided. It has been found out that such techniques usually have three phases, namely shot boundary detection as a pre-processing phase, main phase of key frame detection, where visual, structural, audio and textual features are extracted from each frame, then processed and analyzed with artificial intelligence methods, and the last post-processing phase lies in removal of duplicates if they occur in the resulting sequence of key frames. Estimation techniques and available test video collections have been also observed. At the end, conclusions concerning drawbacks of the examined procedure and basic tendencies of its development have been marked.
Multimedia sequence matching is an urgent problem nowadays for the field of artificial intelligence. Despite great progress in this field of computer science, huge data arrays require near to real time processing, which significantly limits applicable methods. In this paper, the authors make an attempt of time series approach modification and enhancement with orientation for non-stationary data of different length. The processing procedure is enriched by sequences alignment with iterative dynamic time warping which implies matching two temporal data segments. Computational complexity is reduced due to Kohonen self-organizing maps applied for the purpose of clustering. Mathematical presentation is given in scalar, vector and matrix forms in order to cover all the possible use cases. An example of video sequence processing with the novel approach is provided to show its efficiency. The proposed technique can also be successfully implemented for natural language and signal processing, bioinformatics and financial data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.