Over the last few years, human activity recognition (HAR) has drawn increasing interest from the scientific community. This attention is mainly attributable to the proliferation of wearable sensors and the expanding role of HAR in such fields as healthcare, sports, and human activity monitoring. Convolutional neural networks (CNN) are becoming a popular approach for addressing HAR problems. However, this method requires extensive training datasets to perform adequately on new data. This paper proposes a novel deep learning model pre-trained on scalograms generated using the continuous wavelet transform (CWT). Nine popular CNN architectures and different CWT configurations were considered to select the best performing combination, resulting in the training and evaluation of more than 300 deep learning models. On the source KU-HAR dataset, the selected model achieved classification accuracy and an F1 score of 97.48% and 97.52%, respectively, which outperformed contemporary state-of-the-art works where this dataset was employed. On the target UCI-HAPT dataset, the proposed model resulted in a maximum accuracy and F1-score increase of 0.21% and 0.33%, respectively, on the whole UCI-HAPT dataset and of 2.82% and 2.89%, respectively, on the UCI-HAPT subset. It was concluded that the usage of the proposed model, particularly with frozen layers, results in improved performance, faster training, and smoother gradient descent on small HAR datasets. However, the use of the pre-trained model on sufficiently large datasets may lead to negative transfer and accuracy degradation.
A review of the COVID-19 pandemic in Bahrain has been conducted. Correlations between the parameters describing the coronavirus pandemic have been established. Partially lost data was supplemented by polynomial functions, as well as by linear approximation. The number of those who suffered and those who died from COVID-19 was predicted using SGTM neural-like structure topologies supervised mode.
Technical systems in the modern global world are rapidly evolving and improving. In most cases, these are large-scale multi-level systems and one of the problems that arises in the design process of such systems is to determine their reliability. Accordingly, in the paper, a mathematical model based on the Weibull distribution has been developed for determining a computer network reliability. In order to simplify calculating the reliability characteristics, the system is considered to be a hierarchical one, ramified to level 2, with bypass through the level. The developed model allows us to define the following parameters: the probability distribution of the count of working output elements, the availability function of the system, the duration of the system’s stay in each of its working states, and the duration of the system’s stay in the prescribed availability condition. The accuracy of the developed model is high. It can be used to determine the reliability parameters of the large, hierarchical, ramified systems. The research results of modelling a local area computer network are presented. In particular, we obtained the following best option for connecting workstations: 4 of them are connected to the main hub, and the rest (16) are connected to the second level hub, with a time to failure of 4818 h.
The purpose of this paper is to develop a machine-learning model for analyzing and predicting the number of hospitalizations of children in the Lviv region during the fourth wave of the COVID-19 pandemic. This wave is characterized by dominance of a new strain of the virus—Omicron—that spreads faster than previous ones and often affects children. Their high sociability and a low level of vaccination in Ukraine resulted in a sharp increase in the number of hospitalizations. The complexity of the research is also related to the geolocation of the Lviv region. This article analyzes and predicts the number of hospitalizations of children during the fourth wave of the COVID-19 pandemic for the first time for the Lviv region. Data were obtained from publicly available resources. Public Domain Software—the Python programming language and the Pandas library—was used for software implementation of the machine-learning method: the developed model consists of two components—analysis and prediction. The analysis of the number of hospitalized children was performed using the Pearson correlation coefficient. Short- and medium-term predictions were made with the use of non-iterative SGTM neural-like structures that were taught in supervised mode and tested in online mode. The RMS and maximum ones that were reduced to the range of error values of short-term (up to a week) and medium-term (up to 2 weeks) predictions did not exceed 0.48% and 0.61% and 1.81% and 2.83%, respectively. The developed model can also be used for predicting other COVID-19 parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.