Plants are able to reiteratively form new organs in an environmentally adaptive manner during postembryonic development. Organ formation in plants is dependent on stem cell niches (SCNs), which are located in the so-called meristems. Meristems show a functional zonation along the apical-basal axis and the radial axis. Shoot apical meristems of higher plants are dome-like structures, which contain a central SCN that consists of an apical stem cell pool and an underlying organizing center. Organ primordia are formed in the circular peripheral zone (PZ) from stem cell descendants in which differentiation programs are activated. One mechanism to keep this radial symmetry integrated is that the existing SCN actively suppresses stem cell identity in the PZ. However, how this lateral inhibition system works at the molecular level is far from understood. Here, we show that a defect in the putative carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) causes the formation of extra SCNs in the presence of an intact primary shoot apical meristem, which at least partially contributes to the enhanced shoot meristem size and leaf initiation rate found in the mutant. This defect appears to be neither a specific consequence of the altered cytokinin levels in amp1 nor directly mediated by the WUSCHEL/CLAVATA feedback loop. De novo formation of supernumerary stem cell pools was further enhanced in plants mutated in both AMP1 and its paralog LIKE AMP1, indicating that they exhibit partially overlapping roles to suppress SCN respecification in the PZ.
Plants show an indeterminate mode of growth by the activity of organ forming stem cell niches in apically positioned meristems. The correct formation and activity of these meristems are a prerequisite for their adaptive development and also allow the maintenance of organogenesis under adverse circumstances such as wounding. Mutation of the putative Arabidopsis () Glu carboxypeptidase ALTERED MERISTEM PROGRAM1 (AMP1) results in Arabidopsis plants with enlarged shoot apical meristems, supernumerary stem cell pools, and higher leaf formation rate. AMP1 deficiency also causes exaggerated de novo formation of shoot meristems. The activity of AMP1 has been implicated in the control of microRNA (miRNA)-dependent translation; however, it is not known how this function contributes to the shoot meristem defects. Here, we show that the transcription factor RAP2.6L is upregulated in the Arabidopsis mutant. Overexpression of RAP2.6L in the wild type causes mutant-related phenotypic and molecular defects, including enhanced shoot regeneration in tissue culture. Conversely, inhibition of RAP2.6L in the mutant suppresses stem cell hypertrophy and the regenerative capacity. We further provide evidence that is under direct transcriptional control of miRNA-regulated class III homeodomain-Leu zipper (HD-ZIP III) proteins, key regulators of shoot meristem development, which overaccumulate in the mutant. Our results reveal a transcription factor module acting downstream of in the control of shoot stem cell niche patterning. By positioning the HD-ZIP III/RAP2.6L module downstream of AMP1 function, we provide a mechanistic link between the role of AMP1 in miRNA-mediated translational repression and shoot stem cell specification.
) is a member of the M28 family of carboxypeptidases with a pivotal role in plant development and stress adaptation. Its most prominent mutant defect is a unique hypertrophic shoot phenotype combining a strongly increased organ formation rate with enhanced meristem size and the formation of ectopic meristem poles. However, so far the role of AMP1 in shoot development could not be assigned to a specific molecular pathway nor is its biochemical function resolved. In this work we evaluated the level of functional conservation between AMP1 and its human homolog HsGCPII, a tumor marker of medical interest. We show that HsGCPII cannot substitute AMP1 in planta and that an HsGCPII-specific inhibitor does not evoke amp1-specific phenotypes. We used a chemical genetic approach to identify the drug hyperphyllin (HP), which specifically mimics the shoot defects of amp1, including plastochron reduction and enlargement and multiplication of the shoot meristem. We assessed the structural requirements of HP activity and excluded that it is a cytokinin analog. HP-treated wild-type plants showed amp1-related tissue-specific changes of various marker genes and a significant transcriptomic overlap with the mutant. HP was ineffective in amp1 and elevated the protein levels of PHAVOLUTA, consistent with the postulated role of AMP1 in miRNA-controlled translation, further supporting an AMP1-related mode of action. Our work suggests that plant and animal members of the M28 family of proteases adopted unrelated functions. With HP we provide a tool to characterize the plant-specific functions of this important class of proteins.Arabidopsis ALTERED MERISTEM PROGRAM1 (AMP1, At3G54720, MEROPS ID: M28.007) belongs to the Zn 2+
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.