Living building materials (LBM) are gaining interest in the field of sustainable alternative construction materials to reduce the significant impact of the construction industry on global CO2 emissions. This study investigated the process of three-dimensional bioprinting to create LBM incorporating the cyanobacterium Synechococcus sp. strain PCC 7002, which is capable of producing calcium carbonate (CaCO3) as a biocement. Rheology and printability of biomaterial inks based on alginate-methylcellulose hydrogels containing up to 50 wt% sea sand were examined. PCC 7002 was incorporated into the bioinks and cell viability and growth was characterized by fluorescence microscopy and chlorophyll extraction after the printing process. Biomineralization was induced in liquid culture and in the bioprinted LBM and observed by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and through mechanical characterization. Cell viability in the bioprinted scaffolds was confirmed over 14 days of cultivation, demonstrating that the cells were able to withstand shear stress and pressure during the extrusion process and remain viable in the immobilized state. CaCO3 mineralization of PCC 7002 was observed in both liquid culture and bioprinted LBM. In comparison to cell-free scaffolds, LBM containing live cyanobacteria had a higher compressive strength. Therefore, bioprinted LBM containing photosynthetically active, mineralizing microorganisms could be proved to be beneficial for designing environmentally friendly construction materials.
The replacement of potentially hazardous synthetic dyes with natural dyes and pigments are of great interest for a sustainable economy. In order to obtain cost‐efficient, environmentally friendly and competitive products, improvements in the cultivation and extraction of pigment‐producing organisms and in dyeing processes are necessary. In our study, we were able to scale up the production of xylindein by Chlorociboria aeruginascens from 3 to 70 L bioreactor cultivations. We have identified important bioprocess parameters like low shear stress (150 rpm, tip speed <0.5 m/s) for optimal pigment yield (4.8 mg/L/d). Additionally, we have demonstrated the potential of laetiporic acid production by Laetiporus sulphureus in various cultivation systems and media, achieving dried biomass concentrations of almost 10 g/L with a 7 L bioreactor cultivation after 17 days. Extractions performed at 70°C and 15 min incubation time showed optimal results. To the best of our knowledge, we have described for the first time the use of this pigment in silk dyeing, which results in a brilliant hue that cannot easily be produced by other natural pigments.
Laetiporus sulphureus, a wood-decaying basidiomycete, produces yellow-orange pigments in fruiting bodies and, as was recently shown, in submerged cultivated mycelia. Out of four strains, the most potent laetiporic acid producer was identified and its yield compared in different media. The complex Moser b medium was replaced by potato dextrose broth, achieving higher yields at a lower cost. Cultivation was then scaled up from shake flask to a 7 L stirred tank bioreactor. Optimization of parameters led to increased product concentrations up to 1 g L−1, the highest yield reported so far. An in situ product recovery strategy with a biphasic system was established, increasing the yield by 19% on the shake flask scale. A crude ethanolic extract of the biomass was examined for color stability and application trials. In contrast to what has been suggested in the past, the pigment showed limited long-term stability to oxygen and light, but was stable under storage in the dark at 4 °C under nitrogen. The orange extract was successfully incorporated into different matrices like foods, cosmetics and textiles. Laetiporic acid can potentially replace petrochemical based synthetic dyes, and can thus support the development of a circular bioeconomy.
Bioprinting is considered a key technology for future space missions and is currently being established on the International Space Station (ISS). With the aim to perform bioink production as a critical and resource‐consuming preparatory step already on Earth and transport a bioink cartridge “ready to use” to the ISS, the storability of bioinks is investigated. Hydrogel blends based on alginate and methylcellulose are laden with either green microalgae of the species Chlorella vulgaris or with different human cell lines including immortilized human mesenchymal stem cells, SaOS‐2 and HepG2, as well as with primary human dental pulp stem cells. The bioinks are filled into printing cartridges and stored at 4°C for up to four weeks. Printability of the bioinks is maintained after storage. Viability and function of the cells embedded in constructs bioprinted from the stored bioinks are investigated during subsequent cultivation: The microalgae survive the storage period very well and show no loss of growth and functionality, however a significant decrease is visible for human cells, varying between the different cell types. The study demonstrates that storage of bioinks is in principle possible and is a promising starting point for future research, making complex printing processes more effective and reproducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.