In present paper the Equal Channel Angular Extrusion (ECAE) through a rectangular die was firstly physically simulated using plasticine and then theoretically analyzed by upper bound method. Physical simulation was used to identify the deformation zone and as a background for the following theoretical ECAE analysis by rigid block model. The plane strain deformation mode and ideal plasticity of an extruded material were assumed. The dependencies of ECAE pressure, accumulated shear and dimension of a "dead zone" upon friction factor were analytically determined. The rise in ECAE pressure, accumulated shear and size of a "dead zone" with the increase in friction was predicted. The obtained results were compared with the slip line based solution and a good agreement between them was found. Finally the results of upper bound analysis were discussed together with the results of experimental investigations and finite element analysis of ECAE mechanics published elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.