We study an analytical model of a Rashba nanowire that is partially covered by and coupled to a thin superconducting layer, where the uncovered region of the nanowire forms a quantum dot. We find that, even if there is no topological superconducting phase possible, there is a trivial Andreev bound state that becomes pinned exponentially close to zero energy as a function of magnetic field strength when the length of the quantum dot is tuned with respect to its spin-orbit length such that a resonance condition of Fabry-Perot type is satisfied. In this case, we find that the Andreev bound state remains pinned near zero energy for Zeeman energies that exceed the characteristic spacing between Andreev bound state levels but that are smaller than the spin-orbit energy of the quantum dot. Importantly, as the pinning of the Andreev bound state depends only on properties of the quantum dot, we conclude that this behavior is unrelated to topological superconductivity.To support our analytical model, we also perform a numerical simulation of a hybrid system while explicitly incorporating a thin superconducting layer, showing that all qualitative features of our analytical model are also present in the numerical results. arXiv:1810.09840v2 [cond-mat.mes-hall]
We study one-dimensional p-wave superconductors capacitively coupled to a microwave stripline cavity. By probing the light exiting from the cavity, one can reveal the electronic susceptibility of the p-wave superconductor. We analyze two superconducting systems: the prototypical Kitaev chain, and a topological semiconducting wire. For both systems, we show that the photonic measurements, via the electronic susceptibility, allows us to determine the topological phase transition point, the emergence of the Majorana fermions, and the parity of their ground state. We show that all these effects, which are absent in effective theories that take into account the coupling of light to Majorana fermions only, are due to the interplay between the Majorana fermions and the bulk states of the superconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.