Abdominal aortic aneurysm (AAA) is a potentially life-threatening disorder with a mostly asymptomatic course where the abdominal aorta is weakened and bulged. Cytokines play especially important roles (both positive and negative) among the molecular actors of AAA development. All the inflammatory cascades, extracellular matrix degradation and vascular smooth muscle cell apoptosis are driven by cytokines. Previous studies emphasize an altered expression and a changed epigenetic regulation of key cytokines in AAA tissue samples. Such cytokines as IL-6, IL-10, IL-12, IL-17, IL-33, IL-1β, TGF-β, TNF-α, IFN-γ, and CXCL10 seem to be crucial in AAA pathogenesis. Some data obtained in animal studies show a protective function of IL-10, IL-33, and canonical TGF-β signaling, as well as a dual role of IL-4, IFN-γ and CXCL10, while TNF-α, IL-1β, IL-6, IL-12/IL-23, IL-17, CCR2, CXCR2, CXCR4 and the TGF-β noncanonical pathway are believed to aggravate the disease. Altogether data highlight significance of cytokines as informative markers and predictors of AAA. Pathologic serum/plasma concentrations of IL-1β, IL-2, IL-6, TNF-α, IL-10, IL-8, IL-17, IFN-γ, and PDGF have been already found in AAA patients. Some of the changes correlate with the size of aneurysms. Moreover, the risk of AAA is associated with polymorphic variants of genes encoding cytokines and their receptors: CCR2 (rs1799864), CCR5 (Delta-32), IL6 (rs1800796 and rs1800795), IL6R (rs12133641), IL10 (rs1800896), TGFB1 (rs1800469), TGFBR1 (rs1626340), TGFBR2 (rs1036095, rs4522809, rs1078985), and TNFA (rs1800629). Finally, 5 single-nucleotide polymorphisms in gene coding latent TGF-β-binding protein ( LTBP4) and an allelic variant of TGFB3 are related to a significantly slower AAA annual growth rate.
Retinal damage is an optional sign in a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The aim of this work was to assess the structural and functional state of the retina in a murine model of ALS caused by overexpression of the aberrant FUS protein [1-359]. The retinal examination was carried out on 12 transgenic and 13 wild-type mice of 2.5–3 months of age. The study revealed not statistically significant higher level of ophthalmoscopic violations in FUS[1-359] mice. Moreover, gene expression assay confirmed an increased expression of the inflammatory genes Vegfa, Il1b, Il6, Icam1, Tnfa. However, despite the detected structural and functional abnormalities, western blot analysis and quantitative PCR did not detect the expression of the protein and mRNA products of the FUS transgene in the retina of FUS[1-359] mice.
Mutations in the Dmd gene encoding the membrane protein dystrophin are associated with the development of severe X-linked muscle diseases Duchenne and Becker myodystrophy. At the same time, along with the classic symptoms of striated muscles, dystrophin mutations can lead to a decrease in cognitive functions and behavioral abnormalities. Objective: conducting a pilot analysis of behavioral and cognitive characteristics in mice with a genetic defect that reproduces the phenotype of Duchenne myodystrophy. Materials and methods. To assess the features of motor functions and behavior, DmdDel8-34(n=13) and control animals of the wild type (n=12) were subjected to research in the tests "Load retention", "Rotarod", "Elevated plus maze" and "Object recognition". Results. It was found that mice carrying the DmdDel8-34 mutation are characterized by a decrease in motor functions, show signs of anxiety, and also show low exploratory activity. The detected features of the cognitive and emotional status are consistent with clinical observations indicating an increased risk of developing autism spectrum disorders and obsessive-compulsive disorder in patients with Dmd gene mutations. Thus, it was proved that from the 8th week of life, mice of the DmdDel8-34 line show a decrease in performance in the Rotarod and Load Retention tests. Behavioral testing in the Elevated Plus Maze test revealed a decrease in time reaching a statistically significant difference compared to the wild-type control at week 12, and when assessing cognitive functions in the Object Recognition test, it was shown that DmdDel8-34mice show an increase in the discrimination index value, which is a sign of increased efficiency of hippocampal memory. Conclusion. The study made it possible to identify some behavioral anomalies in genetically modified mice carrying a large deletion of exons 8-34 of the Dmd gene encoding dystrophin.
The aim of the work was behavioral and pathomorphological phenotyping of the mice knockout for the DYSF gene, which plays an important role in the development and progression of dysferlinopathy.Materials and methods. A B6.A-Dysfprmd/GeneJ (Bla/J) mice subline was used in the work. During the study, a muscle activity was determined basing on the following tests: “Inverted grid”, “Grip strength”, “Wire Hanging”, “Weight-loaded swimming”, Vertical Pole”. Histological and immunofluorescent examinations of skeletal muscles (m. gastrocnemius, m. tibialis) were performed. The presence and distribution of the dysferlin protein was assessed, and general histological changes in the skeletal muscle characteristics of mice at the age of 12 and 24 weeks, were described. A morphometric analysis with the determination of the following parameters was performed: the proportion of necrotic muscle fibers; the proportion of fibers with centrally located nuclei; the mean muscle fiber diameter.Results. The “Grip strength” test and the “Weight-loaded swimming” test revealed a decrease in the strength of the forelimbs and endurance in the studied mice of the Bla/J subline compared to the control line. The safety of physical performance was checked using the “Wire Hanging” test and the “Vertical Pole” test, which showed a statistically significant difference between the studied mice and control. The coordination of movements and muscle strength of the limbs examined in the “Inverted Grid” test did not change in these age marks. Decreased grip strength of the forelimbs, decreased physical endurance with age, reflects the progression of the underlying muscular disease. Histological methods in the skeletal muscles revealed signs of a myopathic damage pattern: necrotic muscle fibers, moderate lympho-macrophage infiltration, an increase in the proportion of fibers with centrally located nuclei, and an increase in the average fiber diameter compared to the control. The dysferlin protein was not found out in the muscle tissues.Conclusion. Taking into account the results of the tests performed, it was shown that the absence of Dysf-/- gene expressionin Bla/J subline mice led to muscular dystrophy with the onset of the development of phenotypic disease manifestations at the age of 12 weeks and their peak at 24 weeks. Histopathological phenotypic manifestations of the disease are generally nonspecific and corresponded to the data of intravital pathoanatomical examination in diferlinopathy patients. The mice of the studied subline Bla/J are a representative model of dysferlinopathy and can be used to evaluate new therapeutic agents for the treatment of this disease.
Mitochondrial dysfunction is a key driver of neurodegeneration. This study aimed to evaluate the protective potential of EPOR/CD131 (heterodimeric erythropoietin receptor) stimulation in the neurodegeneration caused by rotenone-induced mitochondrial dysfunction. The effects of erythropoietin (EPO) and an EPO mimetic peptide pHBSP were assessed using in vivo and in vitro models. Single injections of 10 µg/kg EPO or 5 µg/kg pHBSP significantly alleviated the degeneration of ganglion cells of the retina in a rotenone-induced retinopathy in rats (p < 0.05). Consistently, in vitro exposure of rotenone-treated murine primary neuroglial cultures to 500 nM EPO or pHBSP significantly rescued the survival of the cells (p < 0.005). The observed enhancement of LC3A, ATG7, Beclin-1, Parkin and BNIP3 mRNA expression by EPOR/CD131 agonists implicates the autophagy and mitophagy activation as a plausible mitoprotective mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.