Pentabrominated and fluorinated aromatic (meth)acrylates as well as their non-halogenated counterparts have been studied with the aim to avoid conventional photoinitiators and to overcome some negative consequences related to their use. Therefore, RTIR spectroscopy, laser flash photolysis and GC/MS were utilized. Even low concentrations (1 to 5 wt%) of brominated (meth)acrylates in the model varnish lead to initiation of a photopolymerization reaction under exposure to UV light with λ > 300 nm. This is due to the fact that excitation of the aryl moiety leads to the homolysis of bromine-phenyl bonds with a high quantum yield of ∼0.15-0.3. Both, bromine radicals released from either ortho, meta or para position as well as the corresponding tetrabromoaryl radicals, may initiate the polymerization of brominated aromatic (meth)acrylates. In contrast, fluorinated aromatic (meth)acrylates undergo α-cleavage of the carboxyl group (as in the case of non-halogenated aromatic (meth)acrylates), if excitation of the acrylic double bonds is done with UV-C light (λ < 280 nm). Radical formation occurs with a comparable quantum yield of 0.1-0.22 (fluorinated) and 0.16-0.36 (non-halogenated compounds), despite the different pathway of fragmentation. Thus, in all cases the efficiency of initiation is comparable to conventional photoinitiators. Quantum chemical calculations of orbitals involved and of the Gibbs free energy of transients and products support the suggested reaction pathway.
Gelatin-based hydrogels are highly desirable biomaterials for use in wound dressing, drug delivery, and extracellular matrix components due to their biocompatibility and biodegradability. However, insufficient and uncontrollable mechanical properties and degradation are the major obstacles to their application in medical materials. Herein, we present a simple but efficient strategy for a novel hydrogel by incorporating the synthetic hydrogel monomer polyethylene glycol diacrylate (PEGDA, offering high mechanical stability) into a biological hydrogel compound (gelatin) to provide stable mechanical properties and biocompatibility at the resulting hybrid hydrogel. In the present work, PEGDA/gelatin hybrid hydrogels were prepared by electron irradiation as a reagent-free crosslinking technology and without using chemical crosslinkers, which carry the risk of releasing toxic byproducts into the material. The viscoelasticity, swelling behavior, thermal stability, and molecular structure of synthesized hybrid hydrogels of different compound ratios and irradiation doses were investigated. Compared with the pure gelatin hydrogel, 21/9 wt./wt. % PEGDA/gelatin hydrogels at 6 kGy exhibited approximately up to 1078% higher storage modulus than a pure gelatin hydrogel, and furthermore, it turned out that the mechanical stability increased with increasing irradiation dose. The chemical structure of the hybrid hydrogels was analyzed by Fourier-transform infrared (FTIR) spectroscopy, and it was confirmed that both compounds, PEGDA and gelatin, were equally present. Scanning electron microscopy images of the samples showed fracture patterns that confirmed the findings of viscoelasticity increasing with gelatin concentration. Infrared microspectroscopy images showed that gelatin and PEGDA polymer fractions were homogeneously mixed and a uniform hybrid material was obtained after electron beam synthesis. In short, this study demonstrates that both the presence of PEGDA improved the material properties of PEGDA/gelatin hybrid hydrogels and the resulting properties are fine-tuned by varying the irradiation dose and PEGDA/gelatin concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.